Abstract
Based on a brief overview of the various aspects of schizophrenia reported by numerous studies, here we hypothesize that schizophrenia may originate (and in part be performed) from visual areas. In other words, it seems that a normal visual system or at least an evanescent visual perception may be an essential prerequisite for the development of schizophrenia as well as of various types of hallucinations. Our study focuses on auditory and visual hallucinations, as they are the most prominent features of schizophrenic hallucinations (and also the most studied types of hallucinations). Here, we evaluate the possible key role of the visual system in the development of schizophrenia.
Acknowledgments
The authors gratefully thank Dr. Steffen Landgraf for writing very useful critical comments to this article.
Conflict of interest statement: The authors declare that they have no conflict of interest.
References
Abrahamyan, A., Clifford, C.W., Ruzzoli, M., Phillips, D., Arabzadeh, E., and Harris, J.A. (2011). Accurate and rapid estimation of phosphene thresholds (REPT). PLoS One 6, e22342.10.1371/journal.pone.0022342Search in Google Scholar
Afra, P., Funke, M., and Matsuo, F. (2009). Acquired auditory-visual synesthesia: a window to early cross-modal sensory interactions. Psychol. Res. Behav. Manag. 2, 31–37.10.2147/PRBM.S4481Search in Google Scholar
Aghajanian, G.K. and Marek, G.J. (1999). Serotonin and hallucinogens. Neuropsychopharmacology 21, 16S–23S.10.1016/S0893-133X(98)00135-3Search in Google Scholar
Aghajanian, G.K. and Marek, G.J. (2000). Serotonin model of schizophrenia: emerging role of glutamate mechanisms. Brain Res. Brain Res. Rev. 31, 302–312.10.1016/S0165-0173(99)00046-6Search in Google Scholar
Akbarian, S. (2014). Epigenetic mechanisms in schizophrenia. Dialogues Clin. Neurosci. 16, 405–417.10.31887/DCNS.2014.16.3/sakbarianSearch in Google Scholar
Alam, R., Abdolmaleky, H.M., and Zhou, J.R. (2017). Microbiome, inflammation, epigenetic alterations, and mental diseases. Am. J. Med. Genet. B. Neuropsychiatr. Genet. 174, 651–660.10.1002/ajmg.b.32567Search in Google Scholar PubMed
Allardyce, J. and Boydell, J. (2006). Review: the wider social environment and schizophrenia. Schizophr. Bull. 32, 592–598.10.1093/schbul/sbl008Search in Google Scholar PubMed PubMed Central
Almeida, J., He, D., Chen, Q., Mahon, B.Z., Zhang, F., Gonçalves, Ó.F., Fang, F., and Bi, Y. (2015). Decoding visual location from neural patterns in the auditory cortex of the congenitally deaf. Psychol. Sci. 26, 1771–1782.10.1177/0956797615598970Search in Google Scholar PubMed PubMed Central
Altshuler, K. and Abdullah S. (1981). Mental health and the deaf adult. In: Deafness and Mental Health. L. Stein, E. Mindel, and T. Jabahey, eds. (New York, USA: Grune & Stratton), pp. 99–112.Search in Google Scholar
Amad, A., Cachia, A., Gorwood, P., Pins, D., Delmaire, C., Rolland, B., Mondino, M., Thomas, P., and Jardri, R. (2014). The multimodal connectivity of the hippocampal complex in auditory and visual hallucinations. Mol. Psychiatry 19, 184–191.10.1038/mp.2012.181Search in Google Scholar PubMed
Andreasen, N.C. and Flaum, M. (1991). Schizophrenia: the characteristic symptoms. Schizophr. Bull.17, 27–49.10.1093/schbul/17.1.27Search in Google Scholar PubMed
Aon, M.A., Roussel, M.R., Cortassa, S., O’Rourke, B., Murray, D.B., Beckmann, M., and Lloyd, D. (2008). The scale-free dynamics of eukaryotic cells. PLoS One 3, e3624.10.1371/journal.pone.0003624Search in Google Scholar
Asher, J.E., Lamb, J.A., Brocklebank, D., Cazier, J.B., Maestrini, E., Addis, L., Sen, M., Baron-Cohen, S., and Monaco, A.P. (2009). A whole-genome scan and fine-mapping linkage study of auditory-visual synesthesia reveals evidence of linkage to chromosomes 2q24, 5q33, 6p12, and 12p12. Am. J. Hum. Genet. 84, 279–285.10.1016/j.ajhg.2009.01.012Search in Google Scholar
Ashtari, M., Cyckowski, L., Yazdi, A., Viands, A., Marshall, K., Bókkon, I., Maguire, A., and Bennett, J. (2014). fMRI of retina-originated phosphenes experienced by patients with Leber congenital amaurosis. PLoS One 9, e86068.10.1371/journal.pone.0086068Search in Google Scholar
Atkinson, J.R. (2006). The perceptual characteristics of voice-hallucinations in deaf people: insights into the nature of subvocal thought and sensory feedback loops. Schizophr. Bull. 32, 701–708.10.1093/schbul/sbj063Search in Google Scholar
Atkinson, J.R. (2007). Exploring the perceptual characteristics of voice-hallucinations in deaf people. Cogn. Neuropsychiatry 12, 339–361.10.1080/13546800701238229Search in Google Scholar
Atkinson, R. and Shiffrin, R.M. (1968). Human memory: a proposed system and its control processes. Psychol. Learn. Motiv. 2, 89–195.10.1016/S0079-7421(08)60422-3Search in Google Scholar
Auer, E.T. Jr., Bernstein, L.E., Sungkarat, W., and Singh, M. (2007). Vibrotactile activation of the auditory cortices in deaf versus hearing adults. Neuroreport 18, 645–648.10.1097/WNR.0b013e3280d943b9Search in Google Scholar PubMed PubMed Central
Babenko, O., Kovalchuk, I., and Metz, G.A. (2015). Stress-induced perinatal and transgenerational epigenetic programming of brain development and mental health. Neurosci. Biobehav. Rev. 48, 70–91.10.1016/j.neubiorev.2014.11.013Search in Google Scholar PubMed
Banissy, M.J., Cassell, J.E., Fitzpatrick, S., Ward, J., Walsh, V.X., and Muggleton, N.G. (2012). Increased positive and disorganised schizotypy in synaesthetes who experience colour from letters and tones. Cortex 48, 1085–1087.10.1016/j.cortex.2011.06.009Search in Google Scholar PubMed
Bankieris, K.R. and Aslin, R.N. (2017). Implicit associative learning in synesthetes and nonsynesthetes. Psychon. Bull. Rev. 24, 935–943.10.3758/s13423-016-1162-ySearch in Google Scholar PubMed PubMed Central
Barnett, K.J. and Newell, F.N. (2008). Synaesthesia is associated with enhanced, self-rated visual imagery. Conscious. Cogn. 17, 1032–1039.10.1016/j.concog.2007.05.011Search in Google Scholar
Barnett, K.J., Foxe, J.J., Molholm, S., Kelly, S.P., Shalgi, S., Mitchell, K.J., and Newell, F.N. (2008). Differences in early sensory-perceptual processing in synesthesia: a visual evoked potential study. Neuroimage 43, 605–613.10.1016/j.neuroimage.2008.07.028Search in Google Scholar
Barth, D.S., Goldberg, N., Brett, B., and Di, S. (1995). The spatiotemporal organization of auditory, visual, and auditory-visual evoked potentials in rat cortex. Brain Res. 24, 678, 177–190.10.1016/0006-8993(95)00182-PSearch in Google Scholar
Basole, A., White, L.E., and Fitzpatrick, D. (2003). Mapping multiple features in the population response of visual cortex. Nature 423, 986–990.10.1038/nature01721Search in Google Scholar
Basole, A., Kreft-Kerekes, V., White, L.E., and Fitzpatrick, D. (2006). Cortical cartography revisited: a frequency perspective on the functional architecture of visual cortex. Prog. Brain Res. 154, 121–134.10.1016/S0079-6123(06)54006-3Search in Google Scholar
Benes, F.M. (2015). The GABA system in schizophrenia: cells, molecules and microcircuitry. Schizophr. Res. 167, 1–3.10.1016/j.schres.2015.07.017Search in Google Scholar
Beneyto, M., Kristiansen, L.V., Oni-Orisan, A., McCullumsmith, R.E., and Meador-Woodruff, J.H. (2007). Abnormal glutamate receptor expression in the medial temporal lobe in schizophrenia and mood disorders. Neuropsychopharmacology 32, 1888–1902.10.1038/sj.npp.1301312Search in Google Scholar
Ben-Shachar, D. (2002). Mitochondrial dysfunction in schizophrenia: a possible linkage to dopamine. J. Neurochem. 83, 1241–1251.10.1046/j.1471-4159.2002.01263.xSearch in Google Scholar
Ben-Shachar, D. and Laifenfeld, D. (2004). Mitochondria, synaptic plasticity, and schizophrenia. Int. Rev. Neurobiol. 59, 273–296.10.1016/S0074-7742(04)59011-6Search in Google Scholar
Benson, P.J., Beedie, S.A., Shephard, E., Giegling, I., Rujescu, D., and St Clair, D. (2012). Simple viewing tests can detect eye movement abnormalities that distinguish schizophrenia cases from controls with exceptional accuracy. Biol. Psychiatry 72, 716–724.10.1016/j.biopsych.2012.04.019Search in Google Scholar PubMed
Bergmann, J., Genç, E., Kohler, A., Singer, W., and Pearson, J. (2016). Neural anatomy of primary visual cortex limits visual working memory. Cereb. Cortex 26, 43–50.10.1093/cercor/bhu168Search in Google Scholar
Bestmann, S., Ruff, C.C., Blakemore, C., Driver, J., and Thilo, K.V. (2007). Spatial attention changes excitability of human visual cortex to direct stimulation. Curr. Biol. 17, 134–139.10.1016/j.cub.2006.11.063Search in Google Scholar
Bizley, J.K., Nodal, F.R., Bajo, V.M., Nelken, I., and King, A.J. (2007). Physiological and anatomical evidence for multisensory interactions in auditory cortex. Cereb. Cortex 17, 2172–2189.10.1093/cercor/bhl128Search in Google Scholar
Bókkon, I. and Antal, I. (2011). Schizophrenia: redox regulation and volume neurotransmission. Curr. Neuropharmacol. 9, 289–300.10.2174/157015911795596504Search in Google Scholar
Bókkon, I. and Vimal, R.L.P. (2010). Implications on visual apperception: energy, duration, structure and synchronization. BioSystems 101, 1–9.10.1016/j.biosystems.2010.04.008Search in Google Scholar
Bókkon, I. and Vimal, R.L.P. (2013). Theoretical implications on (color) visual representation and cytochrome oxidase blobs. Activ. Nerv. Super. 55, 15–37.10.1007/BF03379594Search in Google Scholar
Bola, Ł., Zimmermann, M., Mostowski, P., Jednoróg, K., Marchewka, A., Rutkowski, P., and Szwed, M. (2017). Task-specific reorganization of the auditory cortex in deaf humans. Proc. Natl. Acad. Sci. USA. 114, E600–E609.10.1073/pnas.1609000114Search in Google Scholar
Bolding, M.S., Lahti, A.C., White, D., Moore, C., Gurler, D., Gawne, T.J., and Gamlin, P.D. (2014). Vergence eye movements in patients with schizophrenia. Vision Res. 102, 64–70.10.1016/j.visres.2014.07.008Search in Google Scholar
Bolognini, N., Senna, I., Maravita, A., Pascual-Leone, A., and Merabet, L.B. (2010). Auditory enhancement of visual phosphene perception: the effect of temporal and spatial factors and of stimulus intensity. Neurosci. Lett. 477, 109–114.10.1016/j.neulet.2010.04.044Search in Google Scholar
Boroojerdi, B., Meister, I.G., Foltys, H., Sparing, R., Cohen, L.G., and Töpper, R. (2002). Visual and motor cortex excitability: a transcranial magnetic stimulation study. Clin. Neurophysiol. 113, 1501–1504.10.1016/S1388-2457(02)00198-0Search in Google Scholar
Boshes, R.A., Manschreck, T.C., and Konigsberg, W. (2012). Genetics of the schizophrenias: a model accounting for their persistence and myriad phenotypes. Harv. Rev. Psychiatry 20, 119–129.10.3109/10673229.2012.694321Search in Google Scholar PubMed
Bosley, H.G. and Eagleman, D.M. (2015). Synesthesia in twins: incomplete concordance in monozygotes suggests extragenic factors. Behav. Brain Res. 286, 93–96.10.1016/j.bbr.2015.02.024Search in Google Scholar PubMed
Bottari, D., Heimler, B., Caclin, A., Dalmolin, A., Giard, M.H., and Pavani, F. (2014). Visual change detection recruits auditory cortices in early deafness. Neuroimage 94, 172–184.10.1016/j.neuroimage.2014.02.031Search in Google Scholar PubMed
Bracha, H.S., Wolkowitz, O.M., Lohr, J.B., Karson, C.N., and Bigelow, L.B. (1989). High prevalence of visual hallucinations in research subjects with chronic schizophrenia. Am. J. Psychiatry 146, 526–528.10.1176/ajp.146.4.526Search in Google Scholar PubMed
Brady, B. and Mark, S. (2016). Sound-color associations in psychosis-prone individuals. J. Nerv. Ment. Dis. 204, 614–619.10.1097/NMD.0000000000000532Search in Google Scholar PubMed
Brang, D., Williams, L.E., and Ramachandran, V.S. (2012). Grapheme-color synesthetes show enhanced crossmodal processing between auditory and visual modalities. Cortex 48, 630–637.10.1016/j.cortex.2011.06.008Search in Google Scholar PubMed
Brevard, M.E., Meyer, J.S., Harder, J.A., and Ferris, C.F. (2006). Imaging brain activity in conscious monkeys following oral MDMA (“ecstasy”). Magn. Reson. Imaging 24, 707–714.10.1016/j.mri.2006.03.010Search in Google Scholar PubMed
Brown, A.S. (2011). The environment and susceptibility to schizophrenia. Prog. Neurobiol. 93, 23–58.10.1016/j.pneurobio.2010.09.003Search in Google Scholar PubMed PubMed Central
Buchanan, R.W. and Carpenter, W.T. (2005). Concept of schizophrenia. In: Kaplan and Sadock’s Comprehensive Textbook of Psychiatry. B.J. Sadock and V.A. Sadock, eds. (Philadelphia, USA: Lippincott Williams & Wilkins).10.1097/00005053-199307000-00022Search in Google Scholar
Budinger, E., Heil, P., Hess, A., and Scheich, H. (2006). Multisensory processing via early cortical stages: connections of the primary auditory cortical field with other sensory systems. Neuroscience 143, 1065–1083.10.1016/j.neuroscience.2006.08.035Search in Google Scholar PubMed
Burke, W. (2002). The neural basis of Charles Bonnet hallucinations: a hypothesis. J. Neurol. Neurosurg. Psychiatry 73, 535–541.10.1136/jnnp.73.5.535Search in Google Scholar
Burnet, P.W., Eastwood, S.L., and Harrison, P.J. (1996). 5-HT1A and 5-HT2A receptor mRNAs and binding site densities are differentially altered in schizophrenia. Neuropsychopharmacology 15, 442–455.10.1016/S0893-133X(96)00053-XSearch in Google Scholar
Butler, P.D. and Javitt, D.C. (2005). Early-stage visual processing deficits in schizophrenia. Curr. Opin. Psychiatry 18, 151–157.10.1007/978-0-387-30410-6_10Search in Google Scholar
Butler, P.D., Zemon, V., Schechter, I., Saperstein, A.M., Hoptman, M.J., Lim, K.O., Revheim, N., Silipo, G., and Javitt, D.C. (2005). Early-stage visual processing and cortical amplification deficits in schizophrenia. Arch. Gen. Psychiatry 62, 495–504.10.1001/archpsyc.62.5.495Search in Google Scholar PubMed PubMed Central
Butler, P.D., Silverstein, S.M., and Dakin, S.C. (2008). Visual perception and its impairment in schizophrenia. Biol. Psychiatry 64, 40–47.10.1016/j.biopsych.2008.03.023Search in Google Scholar PubMed PubMed Central
Büchel, C., Price, C., Frackowiak, R.S., and Friston, K. (1998). Different activation patterns in the visual cortex of late and congenitally blind subjects. Brain 121, 409–419.10.1093/brain/121.3.409Search in Google Scholar PubMed
Castro, M.N., Villarreal, M.F., Bolotinsky, N., Papávero, E., Goldschmidt, M.G., Costanzo, E.Y., Drucaroff, L., Wainsztein, A., de Achával, D., Pahissa, J., et al. (2015). Brain activation induced by psychological stress in patients with schizophrenia. Schizophr. Res. 168, 313–321.10.1016/j.schres.2015.07.008Search in Google Scholar PubMed
Cavanaugh, J., Berman, R.A., Joiner, W.M., and Wurtz, R.H. (2016). Saccadic corollary discharge underlies stable visual perception. J. Neurosci. 36, 31–42.10.1523/JNEUROSCI.2054-15.2016Search in Google Scholar PubMed PubMed Central
Cervetto, L., Demontis, G.C., and Gargini, C. (2007). Cellular mechanisms underlying the pharmacological induction of phosphenes. Br. J. Pharmacol. 150, 383–390.10.1038/sj.bjp.0706998Search in Google Scholar PubMed PubMed Central
Chan, R.C., Di, X., McAlonan, G.M., and Gong, Q.Y. (2011). Brain anatomical abnormalities in high-risk individuals, first-episode, and chronic schizophrenia: an activation likelihood estimation meta-analysis of illness progression. Schizophr. Bull. 37, 177–188.10.1093/schbul/sbp073Search in Google Scholar PubMed PubMed Central
Chaudhury, S. (2010). Hallucinations: clinical aspects and management. Ind. Psychiatry J. 19, 5–12.10.4103/0972-6748.77625Search in Google Scholar PubMed PubMed Central
Cierpka, M.,Wolf, N.D., Kubera, K.M., Schmitgen, M.M., Vasic, N., Frasch, K., and Wolf, R.C. (2017). Cerebellar contributions to persistent auditory verbal hallucinations in patients with schizophrenia. Cerebellum 16, 964–972.10.1007/s12311-017-0874-5Search in Google Scholar PubMed
Clark, M.L., Waters, F., Vatskalis, T.M., and Jablensky, A. (2017). On the interconnectedness and prognostic value of visual and auditory hallucinations in first-episode psychosis. Eur. Psychiatry 41, 122–128.10.1016/j.eurpsy.2016.10.011Search in Google Scholar PubMed
Clay, H.B., Sillivan, S., and Konradi, C. (2011). Mitochondrial dysfunction and pathology in bipolar disorder and schizophrenia. Int. J. Dev. Neurosci. 29, 311–324.10.1016/j.ijdevneu.2010.08.007Search in Google Scholar PubMed PubMed Central
Collignon, O., Dormal, G., Albouy, G., Vandewalle, G., Voss, P., Phillips, C., and Lepore, F. (2013). Impact of blindness onset on the functional organization and the connectivity of the occipital cortex. Brain 136, 2769–2783.10.1093/brain/awt176Search in Google Scholar PubMed
Collins, C.E., Airey, D.C., Young, N.A., Leitch, D.B., and Kaas, J.H. (2010). Neuron densities vary across and within cortical areas in primates. Proc. Natl. Acad. Sci. U. S. A. 107, 15927–15932.10.1073/pnas.1010356107Search in Google Scholar PubMed PubMed Central
Coyle, J.T. (2004). The GABA-glutamate connection in schizophrenia: which is the proximate cause? Biochem. Pharmacol. 68, 1507–1514.10.1016/j.bcp.2004.07.034Search in Google Scholar PubMed
Cummings, J.L. and Miller, B.L. (1987). Visual hallucinations: clinical occurrence and use in differential diagnosis. West J. Med. 146, 46–51.Search in Google Scholar
Császár-Nagy, N. and Bókkon, I. (2017). Mother-newborn separation at birth in hospitals: a possible risk for neurodevelopmental disorders? Neurosci. Biobehav. Rev. 84, 337–351.10.1016/j.neubiorev.2017.08.013Search in Google Scholar PubMed
David, C.N., Greenstein, D., Clasen, L., Gochman, P., Miller, R., Tossell, J.W., Mattai, A.A., Gogtay, N., and Rapoport, J.L. (2011). Childhood onset schizophrenia: high rate of visual hallucinations. J. Am. Acad. Child Adolesc. Psychiatry 50, 681–686.e3.10.1016/j.jaac.2011.03.020Search in Google Scholar PubMed PubMed Central
De Jonge, J.C., Vinkers, C.H., Hulshoff Pol, H.E., and Marsman, A. (2017). GABAergic mechanisms in schizophrenia: linking lostmortem and in vivo studies. Front. Psychiatry 8, 118.10.3389/fpsyt.2017.00118Search in Google Scholar PubMed PubMed Central
de Leede-Smith, S. and Barkus, E. (2013). A comprehensive review of auditory verbal hallucinations: lifetime prevalence, correlates and mechanisms in healthy and clinical individuals. Front. Hum. Neurosci. 7, 367.10.3389/fnhum.2013.00367Search in Google Scholar PubMed PubMed Central
Dean, K. and Murray, R.M. (2005). Environmental risk factors for psychosis. Dialogues Clin. Neurosci. 7, 69–80.10.31887/DCNS.2005.7.1/kdeanSearch in Google Scholar
Delbeke, J., Pins, D., Michaux, G., Wanet-Defalque, M.C., Parrini, S., and Veraart, C. (2001). Electrical stimulation of anterior visual pathways in retinitis pigmentosa. Invest Ophthalmol. Vis. Sci. 42, 291–297.Search in Google Scholar
Dirven, B.C.J., Homberg, J.R., Kozicz, T., and Henckens, M.J.A.G. (2017). Epigenetic programming of the neuroendocrine stress response by adult life stress. J. Mol. Endocrinol. 59, R11–R31.10.1530/JME-17-0019Search in Google Scholar PubMed
Doucet, M.E., Bergeron, F., Lassonde, M., Ferron, P., and Lepore, F. (2006). Cross-modal reorganization and speech perception in cochlear implant users. Brain 129, 3376–3383.10.1093/brain/awl264Search in Google Scholar PubMed
Du Feu, M. and McKenna, P. (1999). Prelingually profoundly deaf schizophrenic patients who hear voices: a phenomenological analysis. Acta Psychiatr. Scand. 99, 453–459.10.1111/j.1600-0447.1999.tb00992.xSearch in Google Scholar PubMed
Ducci, F., Newman, T.K., Funt, S., Brown, G.L., Virkkunen, M., and Goldman, D. (2006). A functional polymorphism in the MAOA gene promoter (MAOA-LPR) predicts central dopamine function and body mass index. Mol. Psychiatry 11, 858–866.10.1038/sj.mp.4001856Search in Google Scholar PubMed
Engel, A.K., Senkowski, D., and Schneider, T.R. (2012). Multisensory integration through neural coherence. In: The Neural Bases of Multisensory Processes. M.M. Murra and M.T. Wallace, eds. (Boca Raton, FL, USA: CRC Press), Chapter 7.Search in Google Scholar
Engmann, B. (2011). Peculiarities of schizophrenic diseases in prelingually deaf persons. MMW Fortschr. Med. 153, 10–13.10.1007/BF03367580Search in Google Scholar PubMed
Falchier, A., Clavagnier, S., Barone, P., and Kennedy, H. (2002). Anatomical evidence of multimodal integration in primate striate cortex. J. Neurosci. 22, 5749–5759.10.1523/JNEUROSCI.22-13-05749.2002Search in Google Scholar
Fang, D., Qing, Y., Yan, S., Chen, D., and Yan, S.S. (2016). Development and dynamic regulation of mitochondrial network in human midbrain dopaminergic neurons differentiated from iPSCs. Stem Cell Rep. 7, 678–692.10.1016/j.stemcr.2016.08.014Search in Google Scholar PubMed PubMed Central
Feinberg, I. (1978). Efference copy and corollary discharge: implications for thinking and its disorders. Schizophr. Bull. 4, 636–640.10.1093/schbul/4.4.636Search in Google Scholar PubMed
Ffytche, D.H., Howard, R.J., Brammer, M.J., David, A., Woodruff, P., and Williams, S. (1998). The anatomy of conscious vision: an fMRI study of visual hallucinations. Nat. Neurosci. 1, 738–742.10.1038/3738Search in Google Scholar
Finney, E.M., Clementz, B.A., Hickok, G., and Dobkins, K.R. (2003). Visual stimuli activate auditory cortex in deaf subjects: evidence from MEG. Neuroreport 14, 1425–1427.10.1097/00001756-200308060-00004Search in Google Scholar
Fishman, M.C. and Michael, P. (1973). Integration of auditory information in the cat’s visual cortex. Vision Res. 13, 1415–1419.10.1016/0042-6989(73)90002-3Search in Google Scholar
Ford, J.M., Mathalon, D.H., Heinks, T., Kalba, S., Faustman, W.O., and Roth, W.T. (2001). Neurophysiological evidence of corollary discharge dysfunction in schizophrenia. Am. J. Psychiatry 158, 2069–2071.10.1176/appi.ajp.158.12.2069Search in Google Scholar PubMed
Ford, J.M., Roach, B.J., Faustman, W.O., and Mathalon, D.H. (2007). Synch before you speak: auditory hallucinations in schizophrenia. Am. J. Psychiatry 164, 458–466.10.1176/ajp.2007.164.3.458Search in Google Scholar PubMed
Foxe, J.J., Wylie, G.R., Martinez, A., Schroeder, C.E., Javitt, D.C., Guilfoyle, D., Ritter, W., and Murray, M.M. (2002). Auditory-somatosensory multisensory processing in auditory association cortex: an fMRI study. J. Neurophysiol. 88, 540–543.10.1152/jn.2002.88.1.540Search in Google Scholar PubMed
Friedman, T. and Tin, N.N. (2007). Childhood sexual abuse and the development of schizophrenia. Postgrad. Med. J. 83, 507–508.10.1136/pgmj.2006.054577Search in Google Scholar PubMed PubMed Central
Friston, K.J. and Frith, C.D. (1995). Schizophrenia: a disconnection syndrome? Clin. Neurosci. 3, 89–97.Search in Google Scholar
Frith, C.D. and Done, D.J. (1988). Towards a neuropsychology of schizophrenia. Br. J. Psychiatry 153, 437–443.10.1192/bjp.153.4.437Search in Google Scholar PubMed
Galderisi, S., Quarantelli, M., Volpe, U., Mucci, A., Cassano, G.B., Invernizzi, G., Rossi, A., Vita, A., Pini, S., Cassano, P., et al. (2008). Patterns of structural MRI abnormalities in deficit and nondeficit schizophrenia. Schizophr. Bull. 34, 393–401.10.1093/schbul/sbm097Search in Google Scholar PubMed PubMed Central
Ghazanfar, A.A. and Schroeder, C.E. (2006). Is neocortex essentially multisensory? Trends Cogn. Sci. 10, 278–285.Search in Google Scholar
Ghazanfar, A.A., Maier, J.X., Hoffman, K.L., and Logothetis, N.K. (2005). Multisensory integration of dynamic faces and voices in rhesus monkey auditory cortex. J. Neurosci. 25, 5004–5012.10.1523/JNEUROSCI.0799-05.2005Search in Google Scholar PubMed PubMed Central
Giard, M.H. and Peronnet, F. (1999). Auditory-visual integration during multimodal object recognition in humans: a behavioral and electrophysiological study. J. Cogn. Neurosci. 11, 473–490.10.1162/089892999563544Search in Google Scholar
Gillmeister, H. and Eimer, M. (2007). Tactile enhancement of auditory detection and perceived loudness. Brain Res. 1160, 58–68.10.1016/j.brainres.2007.03.041Search in Google Scholar
Goff, D.C. and Coyle, J.T. (2001). The emerging role of glutamate in the pathophysiology and treatment of schizophrenia. Am. J. Psychiatry 158, 1367–1377.10.1176/appi.ajp.158.9.1367Search in Google Scholar
Goldberg, S.C., Klerman, G.L., and Cole, J.O. (1965). Changes in schizophrenic psychology and ward behaviour as a function of phenothiazine treatment. Br. J. Psychiatry 111, 120–133.10.1192/bjp.111.471.120Search in Google Scholar
Goller, A.I., Otten, L.J., and Ward, J. (2009). Seeing sounds and hearing colors: an event-related potential study of auditory-visual synesthesia. J. Cogn. Neurosci. 21, 1869–1881.10.1162/jocn.2009.21134Search in Google Scholar
Goodwin, D.W., Alderson, P., and Rosenthal, R. (1971). Clinical significance of hallucinations in psychiatric disorders. A study of 116 hallucinatory patients. Arch. Gen. Psychiatry 24, 76–80.10.1001/archpsyc.1971.01750070078011Search in Google Scholar
Gothe, J., Brandt, S.A., Irlbacher, K., Röricht, S., Sabel, B.A., and Meyer, B.U. (2002). Changes in visual cortex excitability in blind subjects as demonstrated by transcranial magnetic stimulation. Brain 125, 479–490.10.1093/brain/awf045Search in Google Scholar
Gysin, R., Kraftsik, R., Sandell, J., Bovet, P., Chappuis, C., Conus, P., Deppen, P., Preisig, M., Ruiz, V., Steullet, P., et al. (2007). Impaired glutathione synthesis in schizophrenia: convergent genetic and functional evidence. Proc. Natl. Acad. Sci. USA. 104, 16621–16216.10.1073/pnas.0706778104Search in Google Scholar
Hänggi, J., Wotruba, D., and Jäncke, L. (2011). Globally altered structural brain network topology in grapheme-color synesthesia. J. Neurosci. 31, 5816–5828.10.1523/JNEUROSCI.0964-10.2011Search in Google Scholar
Harish, M.G., Suresh, K.P., Rajan, I., Reddy, Y.C., and Khanna, S. (1996). Phenomenological study of late-onset schizophrenia. Indian J. Psychiatry 38, 231–235.Search in Google Scholar
Harrison, P. (2000). Dopamine and schizophrenia – proof at last? Lancet 356, 958–959.10.1016/S0140-6736(00)02710-0Search in Google Scholar
Hasson, U., Andric, M., Atilgan, H., and Collignon, O. (2016). Congenital blindness is associated with large-scale reorganization of anatomical networks. Neuroimage 128, 362–372.10.1016/j.neuroimage.2015.12.048Search in Google Scholar
Heinrichs, R. and Zakzanis, K. (1998). Neurocognitive deficit in schizophrenia: a quantitative review of the evidence. Neuropsychology 12, 426–445.10.1037/0894-4105.12.3.426Search in Google Scholar
Hjelm, B.E., Rollins, B., Mamdani, F., Lauterborn, J.C., Kirov, G., Lynch, G., Gall, C.M., Sequeira, A., and Vawter, M.P. (2015). Evidence of mitochondrial dysfunction within the complex genetic etiology of schizophrenia. Mol. Neuropsychiatry 1, 201–219.10.1159/000441252Search in Google Scholar
Hollenbeck, P.J. (2005). Mitochondria and neurotransmission: evacuating the synapse. Neuron 47, 331–333.10.1016/j.neuron.2005.07.017Search in Google Scholar
Hong, L.E., Turano, K.A., O’Neill, H.B., Hao, L., Wonodi, I., McMahon, R.P., and Thaker, G.K. (2009). Is motion perception deficit in schizophrenia a consequence of eye-tracking abnormality? Biol. Psychiatry 65, 1079–1085.Search in Google Scholar
Horn, D.L., Fagan, M.K., Dillon, C.M., Pisoni, D.B., and Miyamoto, R.T. (2007). Visual-motor integration skills of prelingually deaf children: implications for pediatric cochlear implantation. Laryngoscope 117, 2017–2025.10.1097/MLG.0b013e3181271401Search in Google Scholar
Howard, R., Rabins, P.V., Seeman, M.V., and Jeste, D.V. (2000). Late-onset schizophrenia and very-late-onset schizophrenia-like psychosis: an international consensus. The International Late-Onset Schizophrenia Group. Am. J. Psychiatry 157, 172–178.10.1176/appi.ajp.157.2.172Search in Google Scholar
Howes, O.D., Kambeitz, J., Kim, E., Stahl, D., Slifstein, M., Abi-Dargham, A., and Kapur, S. (2012). The nature of dopamine dysfunction in schizophrenia and what this means for treatment. Arch. Gen. Psychiatry 69, 776–786.10.1001/archgenpsychiatry.2012.169Search in Google Scholar
Hötting, K., Rösler, F., and Röder, B. (2003). Crossmodal and intermodal attention modulate event-related brain potentials to tactile and auditory stimuli. Exp. Brain Res. 148, 26–37.10.1007/s00221-002-1261-zSearch in Google Scholar
Hubbard, E.M. and Ramachandran, V.S. (2005). Neurocognitive mechanisms of synesthesia. Neuron 48, 509–520.10.1016/j.neuron.2005.10.012Search in Google Scholar
Hulshoff Pol, H.E., Brans, R.G., van Haren, N.E., Schnack, H.G., Langen, M., Baaré, W.F., van Oel, C.J., and Kahn, R.S. (2004). Gray and white matter volume abnormalities in monozygotic and same-gender dizygotic twins discordant for schizophrenia. Biol. Psychiatry 55, 126–130.10.1016/S0006-3223(03)00728-5Search in Google Scholar
Iarocci, G. and McDonald, J. (2006). Sensory integration and the perceptual experience of persons with autism. J. Autism Dev. Disord. 36, 77–90.10.1007/s10803-005-0044-3Search in Google Scholar PubMed
Ibrahim, L.A., Mesik, L., Ji, X.Y., Fang, Q., Li, H.F., Li, Y.T., Zingg, B., Zhang, L.I., and Tao, H.W. (2016). Cross-modality sharpening of visual cortical processing through layer-1-mediated inhibition and disinhibition. Neuron 89, 1031–1045.10.1016/j.neuron.2016.01.027Search in Google Scholar PubMed PubMed Central
Insel, T.R. (2010). Rethinking schizophrenia. Nature 468, 187–193.10.1038/nature09552Search in Google Scholar PubMed
Iurilli, G., Ghezzi, D., Olcese, U., Lassi, G., Nazzaro, C., Tonini, R., Tucci, V., Benfenati, F., and Medini, P. (2012). Sound-driven synaptic inhibition in primary visual cortex. Neuron 73, 814–828.10.1016/j.neuron.2011.12.026Search in Google Scholar PubMed PubMed Central
Jäncke, L., Rogenmoser, L., Meyer, M., and Elmer, S. (2012). Pre-attentive modulation of brain responses to coloured-hearing synesthetes. BMC Neurosci. 13, 151–165.10.1186/1471-2202-13-151Search in Google Scholar PubMed PubMed Central
Janik McErlean, A.B. and Banissy, M.J. (2016). Examining the relationship between schizotypy and self-reported visual imagery vividness in grapheme-color synaesthesia. Front Psychol. 7, 131.10.3389/fpsyg.2016.00131Search in Google Scholar PubMed PubMed Central
Jones, E.G. and Powell, T.P. (1970). An anatomical study of converging sensory pathways within the cerebral cortex of the monkey. Brain 93, 793–820.10.1093/brain/93.4.793Search in Google Scholar PubMed
Joseph, B., Narayanaswamy, J.C., and Venkatasubramanian, G. (2015). Insight in schizophrenia: relationship to positive, negative and neurocognitive dimensions. Indian J. Psychol. Med. 37, 5–11.10.4103/0253-7176.150797Search in Google Scholar PubMed PubMed Central
Kaludercic, N., Mialet-Perez, J., Paolocci, N., Parini, A., and Di Lisa, F. (2014). Monoamine oxidases as sources of oxidants in the heart. J. Mol.Cell. Cardiol. 73, 34–42.10.1016/j.yjmcc.2013.12.032Search in Google Scholar PubMed PubMed Central
Kapócs, G., Scholkmann, F., Salari, V., Császár, N., Szőke, H., and Bókkon, I. (2017). Possible role of biochemiluminescent photons for lysergic acid diethylamide (LSD)-induced phosphenes and visual hallucinations. Rev. Neurosci. 28, 77–86.10.1515/revneuro-2016-0047Search in Google Scholar PubMed
Kapur, S. and Remington, G. (1996). Serotonin-dopamine interaction and its relevance to schizophrenia. Am. J. Psychiatry 153, 466–476.10.1176/ajp.153.4.466Search in Google Scholar
Kayser, C. and Logothetis, N.K. (2007). Do early sensory cortices integrate crossmodal information? Brain Struct. Funct. 212, 121–132.Search in Google Scholar
Kim, D., Zemon, V., Saperstein, A., Butler, P.D., and Javitt, D.C. (2005). Dysfunction of early-stage visual processing in schizophrenia: harmonic analysis. Schizophr. Res. 76, 55–65.10.1016/j.schres.2004.10.011Search in Google Scholar
Klein, I., Paradis, A.L., Poline, J.P., Kosslyn, S.M., and Le Bihan, D. (2000). Transient activity in the human calcarine cortex during visual-mental imagery: an event-related fMRI study. J. Cogn. Neurosci. 12, 15–23.10.1162/089892900564037Search in Google Scholar
Klimek, V., Rajkowska, G., Luker, S.N., Dilley, G., Meltzer, H.Y., Overholser, J.C., Stockmeier, C.A., and Ordway, G.A. (1999). Brain noradrenergic receptors in major depression and schizophrenia. Neuropsychopharmacology 21, 69–81.10.1016/S0893-133X(98)00134-1Search in Google Scholar
Knoch, D., Gianotti, L.R., Mohr, C., and Brugger, P. (2005). Synesthesia: when colors count. Brain Res. Cogn. Brain Res. 25, 372–374.10.1016/j.cogbrainres.2005.05.005Search in Google Scholar PubMed
Koch, C. (2004). The Quest for Consciousness: A Neurobiological Approach (Roberts & Company Publishers), p. 71.Search in Google Scholar
Konradi, C. and Öngür, D. (2017). Role of mitochondria and energy metabolism in schizophrenia and psychotic disorders. Schizophr. Res. 187, 1–2.10.1016/j.schres.2017.07.007Search in Google Scholar PubMed
Kosslyn, S.M., Pascual-Leone, A., Felician, O., Camposano, S., Keenan, J.P., Thompson, W.L., Ganis, G., Sukel, K.E., and Alpert, N.M. (1999). The role of area 17 in visual imagery: convergent evidence from PET and rTMS. Science 284, 167–170.10.1126/science.284.5411.167Search in Google Scholar PubMed
Kubota, M., Miyata, J., Yoshida, H., Hirao, K., Fujiwara, H., Kawada, R., Fujimoto, S., Tanaka, Y., Sasamoto, A., Sawamoto, N., et al. (2011). Age-related cortical thinning in schizophrenia. Schizophr. Res. 125, 21–29.10.1016/j.schres.2010.10.004Search in Google Scholar PubMed
Kulak, A.,Steullet, P., Cabungcal, J.H., Werge, T., Ingason, A., Cuenod, M., and Do, K.Q. (2013). Redox dysregulation in the pathophysiology of schizophrenia and bipolar disorder: insights from animal models. Antioxid. Redox Signal. 18, 1428–1443.10.1089/ars.2012.4858Search in Google Scholar PubMed
Kundakovic, M. and Jaric, I. (2017). The epigenetic link between prenatal adverse environments and neurodevelopmental disorders. Genes (Basel) 8, 104.10.3390/genes8030104Search in Google Scholar PubMed PubMed Central
Kwon, H.G., Jang, S.H., and Lee, M.Y. (2017). Effects of visual information regarding tactile stimulation on the somatosensory cortical activation: a functional MRI study. Neural Regen. Res. 12, 1119–1123.10.4103/1673-5374.211191Search in Google Scholar
Lakatos, P., Chen, C.M., O’Connell, M.N., Mills, A., and Schroeder, C.E. (2007). Neuronal oscillations and multisensory interaction in primary auditory cortex. Neuron 53, 279–292.10.1016/j.neuron.2006.12.011Search in Google Scholar
Lakatos, P., Karmos, G., Mehta, A.D., Ulbert, I., and Schroeder, C.E. (2008). Entrainment of neuronal oscillations as a mechanism of attentional selection. Science 320, 110–113.10.1126/science.1154735Search in Google Scholar
Landgraf, S. and Osterheider, M. (2013). “To see or not to see: that is the question.” The Protection-Against-Schizophrenia (PaSZ) model: evidence from congenital blindness and visuo-cognitive aberrations. Front. Psychol. 4, 352.10.3389/fpsyg.2013.00352Search in Google Scholar
Landgraf, S., Amado, I., Bour-del, M.C., Leonardi, S., and Krebs, M.O. (2008). Memory-guided saccade abnormalities in schizophrenic patients and their healthy, full biological siblings. Psychol. Med. 38, 861–870.10.1017/S0033291707001912Search in Google Scholar
Landgraf, S., Amado, I., Berthoz, A., and van der Meer, E. (2012). Cognitive identity in schizophrenia: vision, space, and body perception from prodrome to syndrome. Curr. Psychiatry Rev. 8, 119–139.10.2174/1573400511208020119Search in Google Scholar
Laroi, F., Marczewski, P., and Van der Linden, M. (2004). Further evidence of the multi-dimensionality of hallucinatory predisposition: factor structure of a modified version of the Launay-Slade Hallucinations Scale in a normal sample. Eur. Psychiatry 19, 15–20.10.1016/S0924-9338(03)00028-2Search in Google Scholar
Laroi, F., Van der Linden, M., DeFruyt, F., van Os, J., and Aleman, A. (2006). Associations between delusion proneness and personality structure in non-clinical participants: comparison between young and elderly samples. Psychopathology 39, 218–226.10.1159/000093922Search in Google Scholar
Leivada, E. (2016). Vision, language and a protective mechanism towards psychosis Neurosci. Lett. 617, 178–181.Search in Google Scholar
Leivada, E. and Boeckx, C. (2014). Schizophrenia and cortical blindness: protective effects and implications for language. Front. Hum. Neurosci. 8, 940.10.3389/fnhum.2014.00940Search in Google Scholar
Lencer, R., Malchow, C.P., Krecker, K., Nolte, A., Pinnow, M., von Siefart, S.Z., Schwinger, E., and Arolt, V. (1999). Smooth pursuit performance in families with multiple occurrence of schizophrenia and nonpsychotic families. Biol. Psychiatry 45, 694–703.10.1016/S0006-3223(98)00310-2Search in Google Scholar
Leuba, G. and Garey, L.J. (1989). Comparison of neuronal and glial numerical density in primary and secondary visual cortex of man. Exp. Brain Res. 77, 31–38.10.1007/BF00250564Search in Google Scholar PubMed
Levy, D., Sereno, A., Gooding, D., and O’Driscoll, G. (2010). Eye tracking dysfunction in schizophrenia: characterization and pathophysiology. Curr. Top. Behav. Neurosci. 4, 311–347.10.1007/7854_2010_60Search in Google Scholar PubMed PubMed Central
Liang, M., Chen, Y., Zhao, F., Zhang, J., Liu, J., Zhang, X., Cai, Y., Chen, S., Li, X., Chen, L., et al. (2017). Visual processing recruits the auditory cortices in prelingually deaf children and influences cochlear implant outcomes. Otol. Neurotol. 38, 1104–1111.10.1097/MAO.0000000000001494Search in Google Scholar PubMed
Lim, C., Chong, S.A., and Keefe, R. (2009). Psychosocial factors in the neurobiology of schizophrenia: a selective review. Ann. Acad. Med. Sing. 38, 402–406.10.47102/annals-acadmedsg.V38N5p402Search in Google Scholar
Lindenblatt, G. and Silny, J. (2002). Electrical phosphenes: on the influence of conductivity inhomogeneities and small-scale structures of the orbita on the current density threshold of excitation. Med. Biol. Eng. Comput. 40, 354–359.10.1007/BF02344219Search in Google Scholar PubMed
Llorca, P.M., Pereira, B., Jardri, R., Chereau-Boudet, I., Brousse, G., Misdrahi, D., Fénelon, G., Tronche, A.M., Schwan, R., Lançon, C., et al. (2016). Hallucinations in schizophrenia and Parkinson’s disease: an analysis of sensory modalities involved and the repercussion on patients. Sci. Rep. 6, 38152.10.1038/srep38152Search in Google Scholar PubMed PubMed Central
Lomber, S.G., Meredith, M.A., and Kral, A. (2010). Cross-modal plasticity in specific auditory cortices underlies visual compensations in the deaf. Nat. Neurosci. 13, 1421–1427.10.1038/nn.2653Search in Google Scholar PubMed
López-Bescós, L., Filipova, S., and Martos, R. (2007). Long-term safety and efficacy of ivabradine in patients with chronic stable angina. Cardiology 108, 387–396.10.1159/000108387Search in Google Scholar PubMed
Luo, Y.H. and da Cruz, L. (2014). A review and update on the current status of retinal prostheses (bionic eye). Br. Med. Bull. 109, 31e44.10.1093/bmb/ldu002Search in Google Scholar PubMed
Lüer, G., Lass, U., and Shallo-Hoffmann, J., eds. (1988). Eye Movement Research: Physiological and Psychological Aspects (Toronto, Canada: C.J. Hogrefe).Search in Google Scholar
Mahoney, J.R., Holtzer, R., and Verghese, J. (2014). Visual-somatosensory integration and balance: evidence for psychophysical integrative differences in aging. Multisens. Res. 27, 17–42.10.1163/22134808-00002444Search in Google Scholar PubMed PubMed Central
Malassis, R., Del Cul, A., and Collins T. (2015). Corollary discharge failure in an oculomotor task is related to delusional ideation in healthy individuals. PLoS One 10, e0134483.10.1371/journal.pone.0134483Search in Google Scholar PubMed PubMed Central
Mangia, S., Giove, F., and Dinuzzo, M. (2012). Metabolic pathways and activity-dependent modulation of glutamate concentration in the human brain. Neurochem. Res. 37, 2554–2561.10.1007/s11064-012-0848-4Search in Google Scholar PubMed PubMed Central
Maniglia, M., Grassi, M., and Ward, J. (2017). Sounds are perceived as louder when accompanied by visual movement. Multisens. Res. 30, 159–177.10.1163/22134808-00002569Search in Google Scholar
Maric, N.P. and Svrakic, D.M. (2012). Why schizophrenia genetics needs epigenetics: a review. Psychiatr. Danub. 24, 2–18.Search in Google Scholar
Martuzzi, R., Murray, M.M., Michel, C.M., Thiran, J.P., Maeder, P.P., Clarke, S., and Meuli, R.A. (2007). Multisensory interactions within human primary cortices revealed by BOLD dynamics. Cereb. Cortex 17, 1672–1679.10.1093/cercor/bhl077Search in Google Scholar PubMed
Mathalon, D.H. and Ford, J.M. (2008). Corollary discharge dysfunction in schizophrenia: evidence for an elemental deficit. Clin. EEG Neurosci. 39, 82–86.10.1177/155005940803900212Search in Google Scholar PubMed
Maurer, D. (1993). Neonatal synesthesia: implications for the processing of speech and faces. In: Developmental Neurocognition: Speech and Face Processing in the First Year of Life. B. de Boysson-Bardies, S. de Schonen, P. Jusczyk, et al., eds. (Dordrecht, Netherlands: Kluwer Academic Publishers), pp. 109–124.10.1007/978-94-015-8234-6_10Search in Google Scholar
Maurer, D. and Mondloch, C.J. (2006). The infant as synesthete? In: Processes of Change in Brain and Cognitive Development. Y. Munakata and M. Johnson, eds. (Oxford, UK: Oxford University Press), pp. 449–471.Search in Google Scholar
Merabet, L.B., Theoret, H., and Pascual-Leone, A. (2003). Transcranial magnetic stimulation as an investigative tool in the study of visual function. Optom. Vis. Sci. 80, 356–368.10.1097/00006324-200305000-00010Search in Google Scholar PubMed
Merabet, L.B., Maguire, D., Warde, A., Alterescu, K., Stickgold, R., and Pascual-Leone, A. (2004). Visual hallucinations during prolonged blindfolding in sighted subjects. J. Neuroophthalmol. 24, 109–113.10.1097/00041327-200406000-00003Search in Google Scholar PubMed
Merabet, L.B., Swisher, J.D., McMains, S.A., Halko, M.A., Amedi, A., Pascual-Leone, A., and Somers, D.C. (2007). Combined activation and deactivation of visual cortex during tactile sensory processing. J. Neurophysiol. 97, 1633–1641.10.1152/jn.00806.2006Search in Google Scholar PubMed
Meredith, M.A. and Lomber, S.G. (2011). Somatosensory and visual crossmodal plasticity in the anterior auditory field of early-deaf cats. Hear Res. 280, 38–47.10.1016/j.heares.2011.02.004Search in Google Scholar PubMed PubMed Central
Meredith, M.A. and Stein, B.E. (1986). Visual, auditory, and somatosensory convergence on cells in superior colliculus results in multisensory integration. J. Neurophysiol. 56, 640–662.10.1152/jn.1986.56.3.640Search in Google Scholar PubMed
Misiak, B., Stramecki, F., Gawęda, Ł., Prochwicz, K., Sąsiadek, M.M., Moustafa, A.A., and Frydecka, D. (2018). Interactions between variation in candidate genes and environmental factors in the etiology of schizophrenia and bipolar disorder: a systematic review. Mol. Neurobiol. 55, 5075–5100.10.1007/s12035-017-0708-ySearch in Google Scholar PubMed PubMed Central
Mørch, R.H., Dieset, I., Færden, A., Hope, S., Aas, M., Nerhus, M., Gardsjord, E.S., Joa, I., Morken, G., Agartz, I., et al. (2016). Inflammatory evidence for the psychosis continuum model. Psychoneuroendocrinology 67, 189–197.10.1016/j.psyneuen.2016.02.011Search in Google Scholar PubMed
Morita, K., Miura, K., Fujimoto, M., Yamamori, H., Yasuda, Y., Iwase, M., Kasai, K., and Hashimoto, R. (2017). Eye movement as a biomarker of schizophrenia: using an integrated eye movement score. Psychiatry Clin. Neurosci. 71, 104–114.10.1111/pcn.12460Search in Google Scholar PubMed
Muckli, L. (2010). What are we missing here? Brain imaging evidence for higher cognitive functions in primary visual cortex V1. Int. J. Imaging. Syst. Technol. 20, 131–139.10.1002/ima.20236Search in Google Scholar
Mueser, K.T., Bellack, A.S., and Brady, E.U. (1990). Hallucinations in schizophrenia. Acta Psychiatr. Scand. 82, 26–29.10.1111/j.1600-0447.1990.tb01350.xSearch in Google Scholar PubMed
Muguruza, C., Meana, J.J., and Callado, L.F. (2016). Group II metabotropic glutamate receptors as targets for novel antipsychotic drugs. Front. Pharmacol. 7, 130.10.3389/fphar.2016.00130Search in Google Scholar PubMed PubMed Central
Murray, R.M., Sideli, L., Cascia, C., and Barbera, D. (2015). Bridging the gap between research into biological and psychosocial models of psychosis. Shanghai Arch. Psychiatry 27, 139–143.Search in Google Scholar
Murray, M.M., Thelen, A., Thut, G., Romei, V., Martuzzi, R., and Matusz, P.J. (2016). The multisensory function of the human primary visual cortex. Neuropsychologia 83, 161–169.10.1016/j.neuropsychologia.2015.08.011Search in Google Scholar PubMed
Nakashita, S., Saito, D.N., Kochiyama, T., Honda, M., Tanabe, H.C., and Sadato, N. (2008). Tactile-visual integration in the posterior parietal cortex: a functional magnetic resonance imaging study. Brain Res. Bull. 75, 513–525.10.1016/j.brainresbull.2007.09.004Search in Google Scholar PubMed
Nauhaus, I., Nielsen, K.J., and Callaway, E.M. (2016). Efficient receptive field tiling in primate V1. Neuron 91, 893–904.10.1016/j.neuron.2016.07.015Search in Google Scholar PubMed PubMed Central
Naycheva, L., Schatz, A., Röck, T., Willmann, G., Messias, A., Bartz-Schmidt, K.U., Zrenner, E., and Gekeler, F. (2012). Phosphene thresholds elicited by transcorneal electrical stimulation in healthy subjects and patients with retinal diseases. Invest. Ophthalmol. Vis Sci. 53, 7440–7448.10.1167/iovs.12-9612Search in Google Scholar PubMed
Nestler, E.J., Peña, C.J., Kundakovic, M., Mitchellm, A., and Akbarian, S. (2016). Epigenetic basis of mental illness. Neuroscientist 22, 447–463.10.1177/1073858415608147Search in Google Scholar PubMed PubMed Central
Neufeld, J., Sinke, C., Dillo, W., Emrich, H.M., Szycik, G.R., Dima, D., Bleich, S., and Zedler, M. (2012a). The neural correlates of coloured music: a functional MRI investigation of auditory-visual synaesthesia. Neuropsychologia 50, 85–89.10.1016/j.neuropsychologia.2011.11.001Search in Google Scholar PubMed
Neufeld, J., Sinke, C., Zedler, M., Emrich, H.M., and Szycik, G.R. (2012b). Reduced audio-visual integration in synaesthetes indicated by the double-flash illusion. Brain Res. 1473, 78–86.10.1016/j.brainres.2012.07.011Search in Google Scholar PubMed
Neville, H.J. (1995). Developmental specificity in neurocognitive development on humans. In: The Cognitive Neurosciences. Gazzaniga M, ed. (Cambridge, USA: MIT Press), pp. 219–231.Search in Google Scholar
Newell, F.N. and Mitchell, K.J. (2016). Multisensory integration and cross-modal learning in synaesthesia: a unifying model. Neuropsychologia 88, 140–150.10.1016/j.neuropsychologia.2015.07.026Search in Google Scholar PubMed
Niven, J.E. and Laughlin, S.B. (2008). Energy limitation as a selective pressure on the evolution of sensory systems. J. Exp. Biol. 211, 1792–1804.10.1242/jeb.017574Search in Google Scholar PubMed
Noudoost, B. and Moore, T. (2011). Control of visual cortical signals by prefrontal dopamine. Nature 474, 372–375.10.1038/nature09995Search in Google Scholar PubMed PubMed Central
O’Kusky, J. and Colonnier, M. (1982). A laminar analysis of the number of neurons, glia, and synapses in the visual cortex (area 17) of adult macaque monkeys. J. Comp. Neurol. 210, 278–290.10.1002/cne.902100307Search in Google Scholar PubMed
Oertel, V., Rotarska-Jagiela, A., van de Ven, V., Haenschel, C., Grube, M., Stangier, U., Maurer, K., and Linden, D.E. (2009). Mental imagery vividness as a trait marker across the schizophrenia spectrum. Psychiatry Res. 167, 1–11.10.1016/j.psychres.2007.12.008Search in Google Scholar PubMed
Oliveri, M. and Calvo, G. (2003). Increased visual cortical excitability in ecstasy users: a transcranial magnetic stimulation study. J. Neurol. Neurosurg. Psychiatry 74, 1136–1138.10.1136/jnnp.74.8.1136Search in Google Scholar PubMed PubMed Central
Owen, M.J., O’Donovan, M.C., Thapar, A., and Craddock, N. (2011). Neurodevelopmental hypothesis of schizophrenia. Br. J. Psychiatry. 198, 173–175.10.1192/bjp.bp.110.084384Search in Google Scholar PubMed PubMed Central
Pack, C.C. (2014). Eye movements as a probe of corollary discharge function in schizophrenia. ACS Chem. Neurosci. 5, 326–328.10.1021/cn5000869Search in Google Scholar PubMed PubMed Central
Page, N.G., Bolger, J.P., and Sanders, M.D. (1982). Auditory evoked phosphenes in optic nerve disease. J. Neurol. Neurosurg. Psychiatry 45, 7–12.10.1136/jnnp.45.1.7Search in Google Scholar PubMed PubMed Central
Park, C. and Park, S.K. (2012). Molecular links between mitochondrial dysfunctions and schizophrenia. Mol. Cells 33, 105–110.10.1007/s10059-012-2284-3Search in Google Scholar PubMed PubMed Central
Parkkonen, L., Andersson, J., Hämäläinen, M., and Hari, R. (2008). Early visual brain areas reflect the percept of an ambiguous scene. Proc. Natl. Acad. Sci. USA. 105, 20500–20504.10.1073/pnas.0810966105Search in Google Scholar PubMed PubMed Central
Pascual-Leone, A., Amedi, A., Fregni, F., and Merabet, L.B. (2005). The plastic human brain cortex. Annu. Rev. Neurosci. 28, 377–401.10.1146/annurev.neuro.27.070203.144216Search in Google Scholar PubMed
Perrodin, C., Kayser, C., Logothetis, N.K., and Petkov, C.I. (2015). Natural asynchronies in audiovisual communication signals regulate neuronal multisensory interactions in voice-sensitive cortex. Proc Natl Acad Sci USA 112, 273–278.10.1073/pnas.1412817112Search in Google Scholar PubMed PubMed Central
Petro, L.S., Vizioli, L., and Muckli, L. (2014). Contributions of cortical feedback to sensory processing in primary visual cortex. Front. Psychol. 5, 1223.10.3389/fpsyg.2014.01223Search in Google Scholar PubMed PubMed Central
Petro, L.S., Paton, A.T., and Muckli, L. (2017). Contextual modulation of primary visual cortex by auditory signals. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 372.10.1098/rstb.2016.0104Search in Google Scholar PubMed PubMed Central
Phillipson, O.T. and Harris, P.J. (1985). Perceptual changes in schizophrenia: a questionnaire survey. Psychol. Med. 15, 859–866.10.1017/S0033291700005092Search in Google Scholar
Poletti, M., Gebhardt, E., and Raballo, A. (2017). Corollary discharge, self-agency, and the neurodevelopment of the psychotic mind. J. Am. Med. Assoc. Psychiatry 74, 1169–1170.10.1001/jamapsychiatry.2017.2824Search in Google Scholar PubMed
Postmes, L., Sno, H.N., Goedhart, S., van der Stel, J., Heering, H.D., and de Haan, L. (2014). Schizophrenia as a self-disorder due to perceptual incoherence. Schizophr. Res. 152, 41–50.10.1016/j.schres.2013.07.027Search in Google Scholar
Ptito, M., Giguère, J.F., Boire, D., Frost, D.O., and Casanova, C. (2001). When the auditory cortex turns visual. Prog. Brain Res. 134, 447–458.10.1016/S0079-6123(01)34029-3Search in Google Scholar
Ptito, M., Schneider, F.C., Paulson, O.B., and Kupers, R. (2008). Alterations of the visual pathways in congenital blindness. Exp. Brain Res. 187, 41–49.10.1007/s00221-008-1273-4Search in Google Scholar PubMed
Pynn, L.K. and DeSouza, J.F. (2013). The function of efference copy signals: implications for symptoms ofschizophrenia. Vision Res. 76, 124–133.10.1016/j.visres.2012.10.019Search in Google Scholar PubMed
Quak, M., London, R.E., and Talsma, D. (2015). A multisensory perspective of working memory. Front. Hum. Neurosci. 9, 197.10.3389/fnhum.2015.00197Search in Google Scholar PubMed PubMed Central
Raine, A. (2006). Schizotypal personality: neurodevelopmental and psychosocial trajectories. Annu. Rev. Clin. Psychol. 2, 291–326.10.1146/annurev.clinpsy.2.022305.095318Search in Google Scholar PubMed
Rajasekaran, A., Venkatasubramanian, G., Berk, M., and Debnath, M. (2015). Mitochondrial dysfunction in schizophrenia: pathways, mechanisms and implications. Neurosci. Biobehav. Rev. 48, 10–21.10.1016/j.neubiorev.2014.11.005Search in Google Scholar PubMed
Rajji, T.K., Ismail, Z., and Mulsant, B.H. (2009). Age at onset and cognition in schizophrenia: meta-analysis. Br. J. Psychiatry 195, 286–293.10.1192/bjp.bp.108.060723Search in Google Scholar PubMed
Ramos-Estebanez, C., Merabet, L.B., Machii, K., Fregni, F., Thut, G., Wagner, T.A., Romei, V., Amedi, A., and Pascual-Leone, A. (2007). Visual phosphene perception modulated by subthreshold crossmodal sensory stimulation. J. Neurosci. 27, 4178–4181.10.1523/JNEUROSCI.5468-06.2007Search in Google Scholar PubMed PubMed Central
Rao, A., Nobre, A.C., Alexander, I., and Cowey, A. (2007). Auditory evoked visual awareness following sudden ocular blindness: an EEG and TMS investigation. Exp. Brain Res. 176, 288–298.10.1007/s00221-006-0616-2Search in Google Scholar PubMed
Rapoport, J.L., Giedd, J.N., and Gogtay, N. (2012). Neurodevelopmental model of schizophrenia: update 2012. Mol. Psychiatry 17, 1228–1238.10.1038/mp.2012.23Search in Google Scholar PubMed PubMed Central
Remvig, J. (1969). Three clinical studies of deaf-mutism and psychiatry. Acta Psychiatr. Scand. 36, 1–120.Search in Google Scholar
Reznikov, I.U.E. (1981). Mechanophosphene in optic nerve changes. Oftalmol. Zh. 36, 218–220.Search in Google Scholar
Richard, A., Churan, J., Whitford, V., O’Driscoll, G.A., Titone, D., and Pack, C.C. (2014). Perisaccadic perception of visual space in people with schizophrenia. J. Neurosci. 34, 4760–4765.10.1523/JNEUROSCI.4744-13.2014Search in Google Scholar PubMed PubMed Central
Rockel, A.J., Hoirns, R.W., and Powell, T.P.S. (1980). The basic uniformity of structure ofthe neocortex. Brain 103, 221–244.10.1093/brain/103.2.221Search in Google Scholar PubMed
Romei, V., Murray, M.M., Merabet, L.B., and Thut, G. (2007). Occipital transcranial magnetic stimulation has opposing effects on visual and auditory stimulus detection: implications for multisensory interactions. J. Neurosci. 27, 11465–11472.10.1523/JNEUROSCI.2827-07.2007Search in Google Scholar PubMed PubMed Central
Romei, V., Murray, M.M., Cappe, C., and Thut, G. (2009). Preperceptual and stimulus-selective enhancement of low-level human visual cortex excitability by sounds. Curr. Biol. 19, 1799–1805.10.1016/j.cub.2009.09.027Search in Google Scholar PubMed
Romei, V., Gross, J., and Thut, G. (2012). Sounds reset rhythms of visual cortex and corresponding human visual perception. Curr. Biol. 22, 807–813.10.1016/j.cub.2012.03.025Search in Google Scholar PubMed PubMed Central
Ross, L.A., Saint-Amour, D., Leavitt, V.M., Molholm, S., Javitt, D.C., and Foxe, J.J. (2007). Impaired multisensory processing in schizophrenia: deficits in the visual enhancement of speech comprehension under noisy environmental conditions. Schizophr. Res. 97, 173–183.10.1016/j.schres.2007.08.008Search in Google Scholar PubMed
Rouw, R., Scholte, H.S., and Colizoli, O. (2011). Brain areas involved in synaesthesia: a review. J. Neuropsychol. 5, 214–242.10.1111/j.1748-6653.2011.02006.xSearch in Google Scholar PubMed
Rösler, L., Rolfs, M., van der Stigchel, S., Neggers, S.F., Cahn, W., Kahn, R.S., and Thakkar, K.N. (2015). Failure to use corollary discharge to remap visual target locations is associated with psychotic symptom severity in schizophrenia. J Neurophysiol. 114, 1129–1136.10.1152/jn.00155.2015Search in Google Scholar PubMed PubMed Central
Saenz, M. and Koch, C. (2008). The sound of change: visually-induced auditory synesthesia. Curr. Biol. 18, R650–R651.10.1016/j.cub.2008.06.014Search in Google Scholar PubMed
Sannita, W.G., Peachey, N.S., Strettoi, E., Ball, S.L., Belli, F., Bidoli, V., Carozzo, S., Casolino, M., Di Fino, L., Picozza, P., et al. (2007). Electrophysiological responses of the mouse retina to 12C ions. Neurosci. Lett. 416, 231–235.10.1016/j.neulet.2006.12.062Search in Google Scholar PubMed
Sarhan, A., Jahrmi, H., and Compton, M.T. (2008). A potential novel paradigm for testing digit-color synesthetic-like experiences in schizophrenia. Schizophr. Res. 98, 329–330.10.1016/j.schres.2007.05.019Search in Google Scholar PubMed
Sartorius, N., Jablensky, A., Korten, A., Ernberg, G., Anker, M., Cooper, J.E., and Day, R. (1986). Early manifestations and first-contact incidence of schizophrenia in different cultures. A preliminary report on the initial evaluation phase of the WHO Collaborative Study on determinants of outcome of severe mental disorders. Psychol. Med. 16, 909–928.10.1017/S0033291700011910Search in Google Scholar PubMed
Schneider, R.M., Thurtell, M.J., Eisele, S., Lincoff, N., Bala, E., and Leigh, R.J. (2013). Neurological basis for eye movements of the blind. PLoS One 8, e56556.10.1371/journal.pone.0056556Search in Google Scholar PubMed PubMed Central
Schnitzler, A. and Gross, J. (2005). Normal and pathological oscillatory communication in the brain. Nat. Rev. Neurosci. 6, 285–296.10.1038/nrn1650Search in Google Scholar PubMed
Schölvinck, M.L., Friston, K.J., and Rees, G. (2012). The influence of spontaneous activity on stimulus processing in primary visual cortex. Neuroimage 59, 2700–2708.10.1016/j.neuroimage.2011.10.066Search in Google Scholar PubMed PubMed Central
Shams, L. and Kim, R. (2010). Crossmodal influences on visual perception. Phys. Life Rev. 7, 269–284.10.1016/j.plrev.2010.04.006Search in Google Scholar PubMed
Sheffield, J.M. and Barch, D.M. (2016). Cognition and resting-state functional connectivity in schizophrenia. Neurosci. Biobehav. Rev. 61, 108–120.10.1016/j.neubiorev.2015.12.007Search in Google Scholar PubMed PubMed Central
Shergill, S.S., White, T.P., Joyce, D.W., Bays, P.M., Wolpert, D.M., and Frith, C.D. (2014). Functional magnetic resonance imaging of impaired sensory prediction in schizophrenia. J. Am. Med. Assoc. Psychiatry 71, 28–35.10.1001/jamapsychiatry.2013.2974Search in Google Scholar PubMed
Shih, J.C., Chen, K., and Ridd, M.J. (1999). Monoamine oxidase: from genes to behavior. Annu. Rev. Neurosci. 22, 197–217.10.1146/annurev.neuro.22.1.197Search in Google Scholar PubMed PubMed Central
Silverstein, S.M. and Rosen, R. (2015). Schizophrenia and the eye. Schizophr. Res. Cogn. 2, 46–55.10.1016/j.scog.2015.03.004Search in Google Scholar PubMed PubMed Central
Silverstein, S.M., Wang, Y., and Keane, B.P. (2013a). Cognitive and neuroplasticity mechanisms by which congenital or early blindness may confer a protective effect against schizophrenia. Front. Psychol. 3, 624.10.3389/fpsyg.2012.00624Search in Google Scholar PubMed PubMed Central
Silverstein, S.M., Wang, Y., and Roché, M.W. (2013b). Base rates, blindness, and schizophrenia. Front. Psychol. 4, 157.10.3389/fpsyg.2013.00157Search in Google Scholar PubMed PubMed Central
Simner, J., Mulvenna, C., Sagiv, N., Tsakanikos, E., Witherby, S.A., Fraser, C., Scott, K., and Ward, J. (2006). Synaesthesia: the prevalence of atypical cross-modal experiences. Perception 35, 1024–1033.10.1068/p5469Search in Google Scholar PubMed
Sinke, C., Neufeld, J., Zedler, M., Emrich, H.M., Bleich, S., Münte, T.F., and Szycik, G.R. (2014a). Reduced audiovisual integration in synesthesia – evidence from bimodal speech perception. J.Neuropsychol. 8, 94–106.10.1111/jnp.12006Search in Google Scholar PubMed
Sinke, C., Neufeld, J., Wiswede, D., Emrich, H.M., Bleich, S., Münte, T.F., and Szycik, G.R. (2014b). N1 enhancement in synesthesia during visual and audio-visual perception in semantic cross-modal conflict situations: an ERP study. Front. Hum. Neurosci. 8, 21.10.3389/fnhum.2014.00021Search in Google Scholar PubMed PubMed Central
Small, I.R., Small, J.G., and Andersen, J.M. (1966). Clinical characteristics of hallucinations of schizophrenia. Dis. Nerv. Syst. 27, 349–353.Search in Google Scholar
Sommer, M.A. and Wurtz, R.H. (2008). Visual perception and corollary discharge. Perception 37, 408–418.10.1068/p5873Search in Google Scholar PubMed PubMed Central
Sperry, R.W. (1950). Neural basis of the spontaneous optokinetic response produced by visual inversion. J. Comp. Physiol. Psychol. 43, 482–489.10.1037/h0055479Search in Google Scholar PubMed
Spierer, L., Manuel, A.L., Bueti, D., and Murray, M.M. (2013). Contributions of pitch and bandwidth to sound-induced enhancement of visual cortex excitability in humans. Cortex 49, 2728–2734.10.1016/j.cortex.2013.01.001Search in Google Scholar PubMed
Spiller, M.J., Jonas, C.N., Simner, J., and Jansari, A. (2015). Beyond visual imagery: how modality-specific is enhanced mental imagery in synesthesia? Conscious. Cogn. 31, 73–85.10.1016/j.concog.2014.10.010Search in Google Scholar PubMed
Spinelli, D.N., Starr, A., and Barrett, T.W. (1968). Auditory specificity in unit recordings from cat’s visual cortex. Exp. Neurol. 22, 75–84.10.1016/0014-4886(68)90020-4Search in Google Scholar
Staines, W.R., Popovich, C., Legon, J.K., and Adams, M.S. (2014). Early modality-specific somatosensory cortical regions are modulated by attended visual stimuli: interaction of vision, touch and behavioral intent. Front. Psychol. 5, 351.10.3389/fpsyg.2014.00351Search in Google Scholar PubMed PubMed Central
Stein, B.E. and Stanford, T.R. (2008). Multisensory integration: current issues from the perspective of the single neuron. Nat. Rev. Neurosci. 9, 255–266.10.1038/nrn2331Search in Google Scholar PubMed
Stein, B.E., Burr, D., Constantinidis, C., Laurienti, P.J., Alex Meredith, M., Perrault, T.J. Jr., Ramachandran, R., Röder, B., Rowland, B.A., Sathian, K., et al. (2010). Semantic confusion regarding the development of multisensory integration: a practical solution. Eur. J. Neurosci. 31, 1713–1720.10.1111/j.1460-9568.2010.07206.xSearch in Google Scholar PubMed PubMed Central
Steven, M.S. and Blakemore, C. (2004). Visual synaesthesia in the blind. Perception 33, 855–868.10.1068/p5160Search in Google Scholar PubMed
Suzuki, M., Takahashi, S., Matsushima, E., Tsunoda, M., Kurachi, M., Okada, T., Hayashi, T., Ishii, Y., Morita, K., Maeda, H., et al. (2009). Exploratory eye movement dysfunction as a discriminator for schizophrenia: a large sample study using a newly developed digital computerized system. Eur. Arch. Psychiatry Clin. Neurosci. 259, 186–1894.10.1007/s00406-008-0850-7Search in Google Scholar PubMed
Talsma, D. (2015). Predictive coding and multisensory integration: an attentional account of the multisensory mind Front. Integr. Neurosci. 9, 19.10.3389/fnint.2015.00019Search in Google Scholar PubMed PubMed Central
Tang, X., Wu, J., and Shen, Y. (2016). The interactions of multisensory integration with endogenous and exogenous attention. Neurosci. Biobehav. Rev. 61, 208–224.10.1016/j.neubiorev.2015.11.002Search in Google Scholar PubMed PubMed Central
Targum, S.D. (2001). Treating psychotic symptoms in elderly patients. Prim Care Companion J. Clin. Psychiatry 3, 156–163.10.4088/PCC.v03n0402Search in Google Scholar
Tassin, J.P. (1992). NE/DA interactions in prefrontal cortex and their possible roles as neuromodulators in schizophrenia. J. Neural Transm. 36, 135–162.10.1007/978-3-7091-9211-5_7Search in Google Scholar PubMed
Taylor-Clarke, M., Kennett, S. and Haggard, P. (2004). Persistence of visual-tactile enhancement in humans. Neurosci. Lett. 354, 22–25.10.1016/j.neulet.2003.09.068Search in Google Scholar PubMed
Teeple, R.C., Caplan, J.P., and Stern, T.A. (2009). Visual hallucinations: differential diagnosis and treatment. Prim Care Companion J. Clin. Psychiatry 11, 26–32.10.4088/PCC.08r00673Search in Google Scholar PubMed PubMed Central
Terhune, D.B., Tai, S., Cowey, A., Popescu, T., and Cohen Kadosh, R. (2011). Enhanced cortical excitability in grapheme-color synesthesia and its modulation. Curr. Biol. 21, 2006–2009.10.1016/j.cub.2011.10.032Search in Google Scholar PubMed PubMed Central
Thakkar, K.N., Diwadkar, V.A., and Rolfs, M. (2017). Oculomotor prediction: a window into the psychotic mind. Trends Cogn. Sci. 21, 344–356.10.1016/j.tics.2017.02.001Search in Google Scholar PubMed PubMed Central
Thewissen, V., Myin-Germeys, I., Bentall, R., De Graaf, R., Vollebergh, W., and Van Os, J. (2005). Hearing impairment and psychosis revisited. Schizophr. Res. 76, 99–103.10.1016/j.schres.2004.10.013Search in Google Scholar PubMed
Uhlhaas, P. and Singer, W. (2010). Abnormal neural oscillations and synchrony in schizophrenia. Nat. Rev. Neurosci. 11, 100–113.10.1038/nrn2774Search in Google Scholar PubMed
Vachon, P., Voss, P., Lassonde, M., Leroux, J.M., Mensour, B., Beaudoin, G., Bourgouin, P., and Lepore, F. (2013). Reorganization of the auditory, visual and multimodal areas in early deaf individuals. Neuroscience 245, 50–60.10.1016/j.neuroscience.2013.04.004Search in Google Scholar PubMed
Vaisvaser, S., Modai, S., Farberov, L., Lin, T., Sharon, H., Gilam, A., Volk, N., Admon, R., Edry, L., Fruchter, E., et al. (2016). Neuro-epigenetic indications of acute stress response in humans: the case of microRNA-29c. PLoS One 11, e0146236.10.1371/journal.pone.0146236Search in Google Scholar PubMed PubMed Central
Van den Bergh, B.R.H., van den Heuvel, M.I., Lahti, M., Braeken, M., de Rooij, S.R., Entringer, S., Hoyer, D., Roseboom, T., Räikkönen, K., King, S., et al. (2017). Prenatal developmental origins of behavior and mental health: the influence of maternal stress in pregnancy. Neurosci. Biobehav. Rev. S0149-7634(16)30734–5.10.1016/j.neubiorev.2017.07.003Search in Google Scholar PubMed
Van Essen, D.C. (2004). Organization of visual areas in macaque and human cerebral cortex. In: The Visual Neurosciences. L.M. Chalupa and J.S. Werner, eds. (Cambridge, MA, USA: MIT Press), pp. 507–521.10.7551/mitpress/7131.003.0038Search in Google Scholar
van Leeuwen, T.M., Petersson, K.M., and Hagoort, P. (2010). Synaesthetic colour in the brain: beyond colour areas. A functional magnetic resonance imaging study of synaesthetes and matched controls. PLoS One 5, e12074.10.1371/journal.pone.0012074Search in Google Scholar PubMed PubMed Central
van Leeuwen, T.M., Singer, W., and Nikolić, D. (2015). The merit of synesthesia for consciousness research. Front. Psychol. 6, 1850.10.3389/fpsyg.2015.01850Search in Google Scholar
van Leeuwen, T.M., Trautmann-Lengsfeld, S.A., Wallace, M.T., Engel, A.K., and Murray, M.M. (2016). Bridging the gap: synaesthesia and multisensory processes. Neuropsychologia 88, 1–4.10.1016/j.neuropsychologia.2016.06.007Search in Google Scholar
van Venrooij, J.A., Fluitman, S.B., Lijmer, J.G., Kavelaars, A., Heijnen, C.J., Westenberg, H.G., Kahn, R.S., and Gispen-de Wied, C.C. (2012). Impaired neuroendocrine and immune response to acute stress in medication-naive patients with a first episode of psychosis. Schizophr. Bull. 38, 272–279.10.1093/schbul/sbq062Search in Google Scholar
Venkatasubramanian, G. (2007). Schizophrenia is a disorder of aberrant neurodevelopment: a synthesis of evidence from clinical and structural, functional and neurochemical brain imaging studies. Indian J. Psychiatry 49, 244–249.10.4103/0019-5545.37663Search in Google Scholar
Vercillo, T. and Gori, M. (2015). Attention to sound improves auditory reliability in audio-tactile spatial optimal integration. Front. Integr. Neurosci. 9, 34.10.3389/fnint.2015.00034Search in Google Scholar
Vetter, P., Smith, F.W., and Muckli, L. (2014). Decoding sound and imagery content in early visual cortex. Curr. Biol. 24, 1256–1262.10.1016/j.cub.2014.04.020Search in Google Scholar
Waagepetersen, H.S., Sonnewald, U., and Schousboe, A. (1999). The GABA paradox: multiple roles as metabolite, neurotransmitter, and neurodifferentiative agent. J. Neurochem. 73, 1335–1342.10.1046/j.1471-4159.1999.0731335.xSearch in Google Scholar
Ward, J., Huckstep, B., and Tsakanikos, E. (2006). Sound-colour synaesthesia: to what extent does it use cross-modal mechanisms common to us all? Cortex 42, 264–280.10.1016/S0010-9452(08)70352-6Search in Google Scholar
Whittingham, K.M., McDonald, J.S., and Clifford, C.W. (2014). Synesthetes show normal sound-induced flash fission and fusion illusions. Vision Res. 105, 1–9.10.1016/j.visres.2014.08.010Search in Google Scholar PubMed
Winterer, G. and Weinberger, D.R. (2004). Genes, dopamine and cortical signal-to-noise ratio in schizophrenia. Trends Neurosci. 27, 683–690.10.1016/j.tins.2004.08.002Search in Google Scholar PubMed
Xu, M.Q., Sun, W.S., Liu, B.X., Feng, G.Y., Yu, L., Yang, L., He, G., Sham, P., Susser, E., St Clair, D., et al. (2009). Prenatal malnutrition and adult schizophrenia: further evidence from the 1959–1961 Chinese famine. Schizophr. Bull. 35, 568–576.10.1093/schbul/sbn168Search in Google Scholar PubMed PubMed Central
Yan, W., Xia, M., Xing, Z., Cai, Z., Li, G., and Huang, F. (1996). Searching eye movement, smooth pursuit eye movement and schizophrenia. Chin. Med. J. (Engl.) 109, 566–571.Search in Google Scholar
Yong, Z., Hsieh, P.J., and Milea, D. (2017). Seeing the sound after visual loss: functional MRI in acquired auditory-visual synesthesia. Exp. Brain Res. 235, 415–420.10.1007/s00221-016-4802-6Search in Google Scholar PubMed
Yousif, N., Fu, R.Z., Abou-El-Ela Bourquin, B., Bhrugubanda, V., Schultz, S.R., and Seemungal, B.M. (2016). Dopamine activation preserves visual motion perception despite noise interference of human V5/MT. J. Neurosci. 36, 9303–9312.10.1523/JNEUROSCI.4452-15.2016Search in Google Scholar PubMed PubMed Central
Zimmerman, E.C., Bellaire, M., Ewing, S.G., and Grace, A.A. (2013). Abnormal stress responsivity in a rodent developmental disruption model of schizophrenia. Neuropsychopharmacology 38, 2131–2139.10.1038/npp.2013.110Search in Google Scholar PubMed PubMed Central
©2019 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Protein misfolding and aggregation in neurodegenerative diseases: a review of pathogeneses, novel detection strategies, and potential therapeutics
- A possible key role of vision in the development of schizophrenia
- Acute anxiety disorder, major depressive disorder, bipolar disorder and schizophrenia are related to different patterns of nigrostriatal and mesolimbic dopamine dysfunction
- Rats selectively bred for showing divergent behavioral traits in response to stress or novelty or spontaneous yawning with a divergent frequency show similar changes in sexual behavior: the role of dopamine
Articles in the same Issue
- Frontmatter
- Protein misfolding and aggregation in neurodegenerative diseases: a review of pathogeneses, novel detection strategies, and potential therapeutics
- A possible key role of vision in the development of schizophrenia
- Acute anxiety disorder, major depressive disorder, bipolar disorder and schizophrenia are related to different patterns of nigrostriatal and mesolimbic dopamine dysfunction
- Rats selectively bred for showing divergent behavioral traits in response to stress or novelty or spontaneous yawning with a divergent frequency show similar changes in sexual behavior: the role of dopamine