Home Technology Sub-THz pyramidal horn antenna for 6G wireless communication
Article
Licensed
Unlicensed Requires Authentication

Sub-THz pyramidal horn antenna for 6G wireless communication

  • Sunil Kumar EMAIL logo and Saurabh Kumar
Published/Copyright: December 25, 2023
Become an author with De Gruyter Brill

Abstract

In this communication, a pyramidal horn antenna is proposed and investigated to operate in the sub-THz region at a centre frequency of 0.245 THz. The antenna has five layers such as coupling layer, air cavity layer, excitation layer, pyramidal horn, and extended side wings. The coupling layer is responsible to couple the electromagnetic (EM) wave from waveguide feed. The excitation layer consists of a plus shape slot which is responsible for the excitation of the proposed antenna. The air cavity is designed such that it can efficiently excite the plus-shaped slot of the excitation layer. In order to achieve high gain and efficiency, the pyramidal horn and the extended side wings are used in combination. The proposed horn antenna has a significant efficiency and gain of 97.1 % and 19.2 dBi respectively and gives a wide impedance bandwidth of 32.3 % (0.205–0.284 THz). When compared to the literature, the proposed novel design demonstrates significant improvement in terms of bandwidth, directivity, and gain. The antenna finds its suitability for Sub-THz 6G wireless communication.


Corresponding author: Sunil Kumar, Electronics and Communication Engineering Department, National Institute of Technology Hamirpur, Hamirpur, India, E-mail:

  1. Research ethics: All the authors adhered to the accepted ethical standards of a genuine research study.

  2. Author contributions: Conceptualization: Sunil Kumar and Saurabh Kumar; investigation: Sunil Kumar; methodology: Sunil Kumar; writing—original draft: Sunil Kumar; prepared figures: Sunil Kumar; review and editing: Saurabh Kumar; supervision: Saurabh Kumar. All authors reviewed the manuscript.

  3. Competing interests: The authors declare no competing interests.

  4. Research funding: Not applicable.

  5. Data availability: There is no data associated with this manuscript.

References

[1] Y. He, Y. Chen, L. Zhang, S.-W. Wong, and Z. N. Chen, “An overview of terahertz antennas,” China Commun., vol. 17, no. 7, pp. 124–165, Jul. 2020, https://doi.org/10.23919/J.CC.2020.07.011.Search in Google Scholar

[2] M. K. Chintapanti, S. Das, A. Nella, S. Lakrit, and B. Madhav, “A micro-sized rhombus-shaped THz antenna for high-speed short-range wireless communication applications,” Plasmonics, vol. 16, pp. 2167–2177, 2021, https://doi.org/10.1007/s11468-021-01472-z.Search in Google Scholar

[3] B. Aqlan, M. Himdi, H. Vettikalladi, and L. Le-Coq, “A circularly polarized sub-terahertz antenna with low-profile and high-gain for 6G wireless communication systems,” IEEE Access, vol. 9, pp. 122607–122617, 2021, https://doi.org/10.1109/ACCESS.2021.3109161.Search in Google Scholar

[4] M. H. Alsharif, M. A. M. Albreem, A. A. A. Solyman, and S. Kim, “Toward 6G communication networks: terahertz frequency challenges and open research issues,” Comput. Mater. Continua, vol. 66, no. 3, pp. 2831–2842, 2021, https://doi.org/10.32604/cmc.2021.013176.Search in Google Scholar

[5] M. A. Jamshed, A. Nauman, M. A. B. Abbasi, and S. W. Kim, “Antenna selection and designing for THz applications: suitability and performance evaluation: a survey,” IEEE Access, vol. 8, pp. 113246–113261, 2020, https://doi.org/10.1109/ACCESS.2020.3002989.Search in Google Scholar

[6] M. N. E. Temmar, A. Hocini, D. Khedrouche, and T. A. Denidni, “Enhanced flexible terahertz microstrip antenna based on modified silicon-air photonic crystal,” Optik, vol. 217, 2020, Art. no. 164897, https://doi.org/10.1016/j.ijleo.2020.164897.Search in Google Scholar

[7] T. Okan, “High efficiency unslotted ultra-wideband microstrip antenna for sub-terahertz short range wireless communication systems,” Optik, vol. 242, 2021, Art. no. 166859, https://doi.org/10.1016/j.ijleo.2021.166859.Search in Google Scholar

[8] B. Aqlan, M. Himdi, L. Le Coq, and H. Vettikalladi, “Sub-THz circularly polarized horn antenna using wire electrical discharge machining for 6G wireless communications,” IEEE Access, vol. 8, pp. 117245–117252, 2020, https://doi.org/10.1109/ACCESS.2020.3003853.Search in Google Scholar

[9] K. Tekbıyık, A. R. Ekti, G. K. Kurt, and A. Görçin, “Terahertz band communication systems: challenges, novelties and standardization efforts,” Phys. Commun., vol. 35, 2019, Art. no. 100700, https://doi.org/10.1016/j.phycom.2019.04.014.Search in Google Scholar

[10] M. Alibakhshikenari, B. S. Virdee, M. Khalily, et al.., “High-gain on-chip antenna design on silicon layer with aperture excitation for terahertz applications,” IEEE Antenn. Wireless Propag. Lett., vol. 19, no. 9, pp. 1576–1580, Sep. 2020, https://doi.org/10.1109/LAWP.2020.3010865.Search in Google Scholar

[11] Bhunia, S., “Microstrip patch antenna’s limitations and some remedies,” IJECT, vol. 4, pp. 38–39, 2013.Search in Google Scholar

[12] K. Konstantinidis, A. P. Feresidis, Y. Tian, X. Shang, and M. J. Lancaster, “Micromachined terahertz Fabry–Perot cavity highly directive antennas,” IET Microw. Antennas Propag., vol. 9, pp. 1436–1443, 2015, https://doi.org/10.1049/iet-map.2014.0555.Search in Google Scholar

[13] B. Aqlan, M. Himdi, H. Vettikalladi, and L. Le-Coq, “A 300-GHz low-cost high-gain fully metallic Fabry–Perot cavity antenna for 6G terahertz wireless communications,” Sci. Rep., vol. 11, p. 7703, 2021, https://doi.org/10.1038/s41598-021-87076-3.Search in Google Scholar PubMed PubMed Central

[14] N. Chudpooti, N. Duangrit, P. Akkaraekthalin, I. D. Robertson, and N. Somjit, “220–320 GHz hemispherical lens antennas using digital light processed photopolymers,” IEEE Access, vol. 7, pp. 12283–12290, 2019, https://doi.org/10.1109/ACCESS.2019.2893230.Search in Google Scholar

[15] K. Konstantinidis, A. P. Feresidis, C. C. Constantinou, et al.., “Low-THz dielectric lens antenna with integrated waveguide feed,” IEEE Trans. Terahertz Sci. Technol., vol. 7, no. 5, pp. 572–581, Sep. 2017, https://doi.org/10.1109/TTHZ.2017.2725487.Search in Google Scholar

[16] S. Atakaramians, V. Shahraam Afshar, T. M. Monro, and D. Abbott, “Terahertz dielectric waveguides,” Adv. Opt. Photon., vol. 5, pp. 169–215, 2013, https://doi.org/10.1364/aop.5.000169.Search in Google Scholar

[17] P. L. Kirby, D. Pukala, H. Manohara, I. Mehdi, and J. Papapolymerou, “Characterization of micromachined silicon rectangular waveguide at 400 GHz,” IEEE Microw. Wireless Compon. Lett., vol. 16, no. 6, pp. 366–368, Jun. 2006, https://doi.org/10.1109/LMWC.2006.875593.Search in Google Scholar

[18] Y. Li, I. Mehdi, A. Maestrini, R. H. Lin, and J. Papapolymerou, “A broadband 900-GHz silicon micromachined two-anode frequency tripler,” IEEE Trans. Microw. Theor. Tech., vol. 59, no. 6, pp. 1673–1681, Jun. 2011, https://doi.org/10.1109/TMTT.2011.2123112.Search in Google Scholar

[19] C. A. Leal-Sevillano, T. J. Reck, C. Jung-Kubiak, et al.., “Silicon micromachined canonical E-plane and H-plane bandpass filters at the terahertz band,” IEEE Microw. Wireless Compon. Lett., vol. 23, no. 6, pp. 288–290, Jun. 2013, https://doi.org/10.1109/LMWC.2013.2258097.Search in Google Scholar

[20] G. Chattopadhyay, T. Reck, C. Lee, and C. Jung-Kubiak, “Micromachined packaging for terahertz systems,” Proc. IEEE, vol. 105, no. 6, pp. 1139–1150, Jun. 2017, https://doi.org/10.1109/JPROC.2016.2644985.Search in Google Scholar

[21] T. J. Reck, C. Jung-Kubiak, J. Gill, and G. Chattopadhyay, “Measurement of silicon micromachined waveguide components at 500–750 GHz,” IEEE Trans. Terahertz Sci. Technol., vol. 4, no. 1, pp. 33–38, Jan. 2014, https://doi.org/10.1109/TTHZ.2013.2282534.Search in Google Scholar

[22] L. Chang, Y. Li, Z. Zhang, S. Wang, and Z. Feng, “Planar air-filled terahertz antenna array based on channelized coplanar waveguide using hierarchical silicon bulk micromachining,” IEEE Trans. Antenn. Propag., vol. 66, no. 10, pp. 5318–5325, Oct. 2018, https://doi.org/10.1109/TAP.2018.2862360.Search in Google Scholar

[23] T. Tajima, H.-J. Song, K. Ajito, M. Yaita, and N. Kukutsu, “300-GHz step-profiled corrugated horn antennas integrated in LTCC,” IEEE Trans. Antenn. Propag., vol. 62, no. 11, pp. 5437–5444, Nov. 2014, https://doi.org/10.1109/TAP.2014.2350520.Search in Google Scholar

[24] H. Vettikalladi, W. T. Sethi, A. F. B. Abas, W. Ko, M. A. Alkanhal, and M. Himdi, “Sub-THz antenna for high-speed wireless communication systems,” Int. J. Antenn. Propag., vol. 2019, 2019, Art. no. 9573647, https://doi.org/10.1155/2019/9573647.Search in Google Scholar

[25] J. Xu, Z. N. Chen, and X. Qing, “270-GHz LTCC-integrated high gain cavity-backed fresnel zone plate lens antenna,” IEEE Transactions on Antennas and Propagation, vol. 61, no. 4, pp. 1679–1687, Apr. 2013, https://doi.org/10.1109/TAP.2012.2232261.Search in Google Scholar

[26] K. M. Luk, S. F. Zhou, Y. J. Li, et al.., “A microfabricated low-profile wideband antenna array for terahertz communications,” Sci. Rep., vol. 7, p. 1268, 2017, https://doi.org/10.1038/s41598-017-01276-4.Search in Google Scholar PubMed PubMed Central

Received: 2023-04-26
Accepted: 2023-12-05
Published Online: 2023-12-25
Published in Print: 2024-04-25

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 14.12.2025 from https://www.degruyterbrill.com/document/doi/10.1515/freq-2023-0114/html?srsltid=AfmBOorB6Rdx3HsfmQ41Qz41PQmjrzPpW2nSpkMolLnl1mHF_BKx0l2x
Scroll to top button