Home The crystal structure of (E)-1-((3)-nitrophenyl)pyren-3-(pyren-1-yl)prop-2-en-1-one, C25H15NO3
Article Open Access

The crystal structure of (E)-1-((3)-nitrophenyl)pyren-3-(pyren-1-yl)prop-2-en-1-one, C25H15NO3

  • Claudio Barrientos , J. Arturo Squella and Silvana Moris ORCID logo EMAIL logo
Published/Copyright: January 27, 2025

Abstract

C25H15NO3, triclinic, P1̄ (no. 2), a = 8.4899(3) Å, b = 10.1383(4) Å, c = 11.3806(5) Å, α = 78.373(1)°, β = 72.020(1)°, γ = 73.381(1)°, V = 885.89(6) Å3, Z = 2, R gt (F) = 0.0439, wR ref (F2) = 0.1290, T = 296.15 K.

CCDC no.: 2416919

Table 1 contains crystallographic data and Table 2 contains the list of the atoms including atomic coordinates and displacement parameters.

Table 1:

Data collection and handling.

Crystal: Orange block
Size: 0.16 × 0.16 × 0.12 mm
Wavelength:

μ:
Mo Kα radiation (0.71073 Å)

0.09 mm−1
Diffractometer, scan mode:

θmax, completeness:
Bruker APEX-II, φ and ω

26.4°, 99 %
N(hkl)measured, N(hkl)unique, Rint: 25692, 3611, 0.038
Criterion for Iobs, N(hkl)gt: Iobs > 2σ(Iobs), 2790
N(param)refined: 263
Programs: Olex2, 1 , 2 SHELX, 3 PLATON 4
Table 2:

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2).

Atom x y z Uiso*/Ueq
C1 0.82079 (18) −0.09534 (14) 0.82596 (14) 0.0484 (4)
H1 0.88114 (18) −0.02805 (14) 0.78625 (14) 0.0581 (4)*
C2 0.90100 (18) −0.22121 (15) 0.87785 (14) 0.0489 (4)
C3 0.8171 (2) −0.32418 (15) 0.93693 (14) 0.0530 (4)
H3 0.8743 (2) −0.40886 (15) 0.97073 (14) 0.0636 (5)*
C4 0.6468 (2) −0.29854 (15) 0.94458 (14) 0.0556 (4)
H4 0.5876 (2) −0.36661 (15) 0.98418 (14) 0.0667 (5)*
C5 0.56208 (19) −0.17244 (15) 0.89399 (14) 0.0505 (4)
H5 0.44639 (19) −0.15632 (15) 0.90054 (14) 0.0606 (4)*
C6 0.64827 (18) −0.06983 (14) 0.83358 (13) 0.0456 (3)
C7 0.56828 (19) 0.06617 (14) 0.77011 (14) 0.0502 (4)
C8 0.38248 (19) 0.11314 (15) 0.79359 (14) 0.0524 (4)
H8 0.31296 (19) 0.05646 (15) 0.84480 (14) 0.0629 (4)*
C9 0.31403 (19) 0.23666 (15) 0.74157 (14) 0.0503 (4)
H9 0.39159 (19) 0.28787 (15) 0.69282 (14) 0.0604 (4)*
C10 0.13601 (18) 0.30429 (14) 0.74915 (13) 0.0460 (3)
C11 0.0070 (2) 0.23634 (15) 0.81603 (14) 0.0539 (4)
H11 0.0357 (2) 0.14931 (15) 0.86023 (14) 0.0646 (5)*
C12 −0.16074 (19) 0.29460 (16) 0.81814 (15) 0.0553 (4)
H12 −0.24310 (19) 0.24659 (16) 0.86393 (15) 0.0664 (5)*
C13 −0.21009 (18) 0.42467 (15) 0.75282 (13) 0.0481 (3)
C14 −0.38354 (19) 0.48695 (17) 0.74993 (15) 0.0566 (4)
H14 −0.46712 (19) 0.43890 (17) 0.79223 (15) 0.0679 (5)*
C15 −0.42811 (19) 0.61322 (17) 0.68747 (15) 0.0584 (4)
H15 −0.54193 (19) 0.65075 (17) 0.68812 (15) 0.0700 (5)*
C16 −0.30510 (18) 0.69073 (15) 0.62041 (14) 0.0503 (4)
C17 −0.3478 (2) 0.82252 (18) 0.55483 (16) 0.0617 (4)
H17 −0.4609 (2) 0.86207 (18) 0.55453 (16) 0.0741 (5)*
C18 −0.2259 (2) 0.89449 (17) 0.49098 (16) 0.0643 (5)
H18 −0.2574 (2) 0.98193 (17) 0.44825 (16) 0.0772 (5)*
C19 −0.0572 (2) 0.83832 (16) 0.48963 (15) 0.0562 (4)
H19 0.0242 (2) 0.88800 (16) 0.44571 (15) 0.0674 (5)*
C20 −0.00734 (18) 0.70739 (14) 0.55370 (13) 0.0464 (3)
C21 −0.13190 (17) 0.63218 (14) 0.62037 (12) 0.0434 (3)
C22 −0.08343 (17) 0.49822 (14) 0.68613 (12) 0.0420 (3)
C23 0.09093 (17) 0.43875 (14) 0.68442 (12) 0.0426 (3)
C24 0.21231 (18) 0.51862 (15) 0.61550 (14) 0.0492 (4)
H24 0.32675 (18) 0.48167 (15) 0.61317 (14) 0.0591 (4)*
C25 0.16610 (18) 0.64542 (15) 0.55402 (14) 0.0508 (4)
H25 0.24915 (18) 0.69369 (15) 0.51079 (14) 0.0609 (4)*
N1 1.08375 (17) −0.24715 (14) 0.86821 (14) 0.0632 (4)
O1 1.16062 (16) −0.36356 (13) 0.89792 (13) 0.0801 (4)
O2 1.15100 (17) −0.15056 (15) 0.83108 (19) 0.1084 (6)
O3 0.66127 (14) 0.13690 (11) 0.69929 (13) 0.0770 (4)

1 Source of materials

Equimolar amounts of 1-pyrencarboxaldehyde and 3-nitroacetophenone were carried out under reflux for 8 h in ethanol with two drops of piperidine as a catalyst. 5 The solid product precipitates in the reaction medium, and then is filtered under vacuum and washed with hot ethanol to eliminate all traces of starting reagents. The product is a yellow solid. To obtain single crystals, the solid product was placed in hot DMF and left to crystallize for two weeks, or until orange blocks started to emerge (E)-1-((3)-nitrophenyl)-3-(pyren-1-yl)prop-2-en-1-one. Yield 85 %. 1H NMR (400 MHz, DMSO‑d6) δ 8.97 (d, J = 15.3 Hz, 1H), 8.92 (t, J = 2.0 Hz, 1H), 8.89 (d, J = 8.2 Hz, 1H), 8.71 (dt, J = 7.9, 1.3 Hz, 1H), 8.65 (d, J = 9.4 Hz, 1H), 8.53–8.48 (m, 1H),8.42–8.22 (m, 7H), 8.14 (t, J = 7.6 Hz, 1H), 7.91 (t, J = 8.0 Hz, 1H). 13C NMR (101 MHz, DMSO) δ 187.80, 148.72, 141.52, 139.35, 135.27, 133.27, 131.29, 131.09, 130.63, 130.41, 129.51, 129.42, 128.33, 127.86, 127.82, 127.18, 126.86, 126.62, 125.74, 125.73, 124.55, 124.19, 123.79, 123.39, 122.76.

2 Experimental details

Using Olex2, 1 with the olex2.solve 2 using Charge Flipping and refined with the SHELXL 3 the structure was solved. SADABS-2016/2 (Bruker, 2016/2) was used for absorption correction. Interactions were calculated using Platon. 4

H atoms were finally included in their calculated positions and treated as riding on their parent atom with constrained thermal parameters as Uiso(H) = 1.2 Ueq(C), the constraint distances of C–H was 0.93 Å.

3 Comment

Chalcones are organic compounds found in plants and are related to the flavonoid family, structurally present two aromatic fragments linked through a double bond conjugated to a carbonyl, 6 these compounds are vastly studied and synthesized due to their chemical modifications that allow preparing of multiple derivatives including heterocyclic compounds. 7 Some chalcones show biological properties such as analgesic, 8 anti-inflammatory, 9 antiplatelet, 10 antioxidant 11 for example. By other hand, pyrenes are known for optical uses, and pyrene chalcones are molecules that can be transformed into other structures with interesting photo physicochemical properties. 12 In this structure there are two crystallographically independent molecules in the asymmetric unit. The N–O bond lengths in the nitro group range from 1.2115(18) to 1.2116(17) Å. The angle between O–N–O in these structures is 122.76(15)°, O–N–C range between 118.91(14)° to 118.33(13)°, similar value to reported by us in Barrientos, et al. 13 , 14 , 15 There are no classical hydrogen bonds in the crystal packing, 4 it only exhibits intermolecular C–H⋯O interactions with distances of 2.376(2)–2.525(2) Å between the donor and acceptor atoms. 16 The crystal structure exhibits N–O⋯π interactions N(1)–O(1)⋯Cg(2) = 3.8000(15) Å and N(1)–O(1)⋯Cg(5) = 3.8326(15) Å.


Corresponding author: Silvana Moris, Centro de Investigación de Estudios Avanzados del Maule (CIEAM), Vicerrectoría de Investigación y Postgrado, Universidad Católica del Maule, Talca, Chile, E-mail:

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Conflict of interest: The authors declare no conflicts of interest regarding this article.

  3. Research funding: ANID Fondecyt Regular 1210899 and FONDEQUIP EQM200138 for D8 Venture diffractometer.

References

1. Bourhis, L. J.; Dolomanov, O. V.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. The Anatomy of a Comprehensive Constrained, Restrained Refinement Program for the Modern Computing Environment – Olex2 Dissected. Acta Crystallogr. 2015, A71, 59–75; https://doi.org/10.1107/s2053273314022207.Search in Google Scholar

2. Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. Olex2: a Complete Structure Solution, Refinement and Analysis Program. J. Appl. Crystallogr. 2009, 42, 339–341; https://doi.org/10.1107/s0021889808042726.Search in Google Scholar

3. Sheldrick, G. M. Crystal Structure Refinement with Shelxl. Acta Crystallogr. 2015, C71, 3–8; https://doi.org/10.1107/s2053229614024218.Search in Google Scholar

4. Spek, A. L. Single-crystal Structure Validation with the Program Platon. J. Appl. Crystallogr. 2003, 36, 7–13; https://doi.org/10.1107/s0021889802022112.Search in Google Scholar

5. Karuppusamy, A.; Sharma, A.; Justin Thomas, K. R.; Kannan, P. Experimental and Theoretical Investigations on Chalcones Containing Pyrene. J. Mol. Struct. 2022, 1268, 133532; https://doi.org/10.1016/j.molstruc.2022.133532.Search in Google Scholar

6. Alam, M. S.; Rahman, S. M.; Lee, D.-U. Synthesis, Biological Evaluation, Quantitative–SAR and Docking Studies of Novel Chalcone Derivatives as Antibacterial and Antioxidant Agents. Chem. Pap. 2015, 69, 1118–1129; https://doi.org/10.1515/chempap-2015-0113.Search in Google Scholar

7. Rammohan, A.; Reddy, J. S.; Sravya, G.; Rao, C. N.; Zyryanov, G. V. Chalcone Synthesis, Properties and Medicinal Applications: a Review. Environ. Chem. Lett. 2020, 18, 433–458; https://doi.org/10.1007/s10311-019-00959-w.Search in Google Scholar

8. Lakshminarayanan, B.; Kannappan, N.; Subburaju, T. Synthesis and Biological Evaluation of Novel Chalcones with Methanesulfonyl End as Potent Analgesic and Anti-inflammatory Agents. Int. J. Pharmaceut. Res. Biosci 2020, 11, 4974–4981.Search in Google Scholar

9. Ibrahim, T. S.; Moustafa, A. H.; Almalki, A. J.; Allam, R. M.; Althagafi, A.; Md, S.; Mohamed, M. F. Novel Chalcone/aryl Carboximidamide Hybrids as Potent Anti-inflammatory via Inhibition of Prostaglandin E2 and Inducible NO Synthase Activities: Design, Synthesis, Molecular Docking Studies and ADMET Prediction. J. Enzym. Inhib. Med. Chem. 2021, 36, 1067–1078; https://doi.org/10.1080/14756366.2021.1929201.Search in Google Scholar PubMed PubMed Central

10. Fakhrudin, N.; Pertiwi, K. K.; Takubessi, M. I.; Susiani, E. F.; Nurrochmad, A.; Widyarini, S.; Sudarmanto, A.; Nugroho, A. A.; Wahyuono, S. A Geranylated Chalcone with Antiplatelet Activity from the Leaves of Breadfruit (Artocarpus altilis). Pharmacia 2020, 67, 173–180; https://doi.org/10.3897/pharmacia.67.e56788.Search in Google Scholar

11. Al Zahrani, N. A.; El-Shishtawy, R. M.; Elaasser, M. M.; Asiri, A. M. Synthesis of Novel Chalcone-Based Phenothiazine Derivatives as Antioxidant and Anticancer Agents. Molecules 2020, 25, 4566; https://doi.org/10.3390/molecules25194566.Search in Google Scholar PubMed PubMed Central

12. Karuppusamy, A.; Vandana, T.; Kannan, P. Pyrene Based Chalcone Materials as Solid State Luminogens with Aggregation-Induced Enhanced Emission Properties. J. Photochem. Photobiol., A 2017, 345, 11–20; https://doi.org/10.1016/j.jphotochem.2017.05.026.Search in Google Scholar

13. Barrientos, C.; Barahona, P.; Guevara, J. L.; Squella, J. A.; Moris, S. The Crystal Structure of 4-(pyren-1-yl)butyl-3-nitrobenzoate, C27H21NO4. Z. Kristallogr. N. Cryst. Struct. 2019, 234, 1213–1214; https://doi.org/10.1515/ncrs-2019-0340.Search in Google Scholar

14. Barrientos, C.; Squella, J. A.; Moris, S. The Crystal Structure of 4-(pyren-1-yl)butyl-4-nitrobenzoate, C27H21NO4. Z. Kristallogr. N. Cryst. Struct. 2023, 238, 459–461; https://doi.org/10.1515/ncrs-2023-0034.Search in Google Scholar

15. Barrientos, C.; Galdámez, A.; Moris, S. The Crystal Structure of 5-Nitronaphthoquinone, C10H5NO4. Z. Kristallogr. N. Cryst. Struct. 2023, 238, 787–789; https://doi.org/10.1515/ncrs-2023-0211.Search in Google Scholar

16. Moris, S.; Galdámez, A.; Jara, P.; Saitz-Barria, C. Synthesis of Novel p-tert–Butylcalix[4]arene Derivative: Structural Characterization of a Methanol Inclusion Compound. Crystals 2016, 6, 114; https://doi.org/10.3390/cryst6090114.Search in Google Scholar

Received: 2024-12-13
Accepted: 2025-01-14
Published Online: 2025-01-27
Published in Print: 2025-04-28

© 2025 the author(s), published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution 4.0 International License.

Articles in the same Issue

  1. Frontmatter
  2. New Crystal Structures
  3. The crystal structure of N-(3-bromo-4-fluorophenyl)-N′-hydroxy-4-{[2-(4-methylphenyl)ethyl]amino}-1,2,5-oxadiazole-3-carboximidamide, C18H17BrFN5O2
  4. Synthesis and crystal structure of ethyl (2S,4aS,6aS,6bR,8aR,12aS,12bR,14bR,E)-10-(((3,4-dichlorobenzyl)oxy)imino)-2,4a,6a,6b,9,9,12a-heptamethyl-13-oxo-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,12b,13,14b-icosahydropicene-2-carboxylate
  5. The crystal structure of pyrazole nitrate
  6. Crystal structure of tetramethyl-bis(μ2-2-(2-hydroxy-3-methoxybenzylidene)-1-(6-(2-(2-hydroxy-3-methoxybenzylidene)hydrazine-1-carbonyl)picolinoyl)hydrazin-1-ido-κ4O,N,O′:O′)ditin(II) ─ ethanol (1/2), C54H62N10O14Sn2
  7. Crystal structure of catena-poly[μ3-iodido-(4-bromopyridine-κ1N)copper(I)], C5H4BrNCuI
  8. The crystal structure of cyclopentadienyl Co–P–C complexes by benzylideneacetone addition, C38H38CoO2P
  9. Synthesis and crystal structure of-(3S,10S,13S,17S)-N-(2-methoxyphenyl)-10,13-dimethyl-17-((R)-1-(phenylamino)ethyl)hexadecahydro-1H-cyclopenta[α]phenanthren-3-amine, C34H48N2O
  10. The crystal structure of (E)-3-((E)-3-(4-ethoxy-3-methoxyphenyl)-1-hydroxyallylidene) chroman-2,4-dione, C21H18O6
  11. The crystal structure of trans–L/D-[bis-(2-methyl-8-hydroxyquinoline-κ2 N,O) bis-(1,3,5-triaza-7-phosphaadamantane-κ2 P)cobalt(III)] tetrafluoroborate
  12. Crystal structure of 9-chloro-2,3,4,4a,5,6-hexahydro-1H-pyrido [1′,2′:1,6]pyrazino[2,3-b]quinoxaline, C14H15ClN4
  13. Crystal structure of 7-(diethylamino)-3-(benzoyl)-2 H -chromen-2-one, C20H19NO3
  14. The crystal structure of 4–bromo-3,5-dinitropyrazole
  15. Crystal structure of 8-hydroxy-3,5,8a-trimethyl-7,8,8a,9-tetrahydronaphtho[2,3-b]furan-4,6-dione, C15H16O4
  16. Crystal structure of 5-hydroxy-3,5,8a-trimethyl-4a,5,6,7,8a,9-hexahydronaphtho[2,3-b]furan-4,8-dione, C15H18O4
  17. Synthesis and crystal structure of-(3S,10S,13S,17S)-N-(2-methoxyphenyl)-10,13-dimethyl-17-((R)-1-(p-tolylamino)ethyl)hexadecahydro-1H-cyclopenta[α]phenanthren-3-amine, C35H50N2O
  18. The crystal structure of catena-poly((μ2-1,3,5-tri(1H- imidazol-1-yl)benzene κ2N:N′)-bis(4-hydroxbenzoato-κ1O)-zinc(II) monohydrate), C29H24N6O7Zn
  19. Crystal structure of 2-(benzo[d]oxazol-2-yl)acetonitrile, C9H6N2O
  20. Crystal structure of 1,3-dihydroxy-6,8-dimethoxy-2-(6-methyltetrahydro-2Hpyran-2-yl)-4a,9a-dihydroanthracene-9,10-dione, C22H22O7
  21. The crystal structure of the double salt potassium 1-methylpiperazine-1,4-di-ium trinitrate, C5H14KN5O9
  22. Crystal structure of 5′-hydroxy-6′-methoxy-1′-methyl-2′,3′,8′,8a′-tetrahydro-1′H-spiro[cyclohexane-1,7′-cyclopenta[ij]isoquinoline]-2,5-dien-4-one, C18H19NO3
  23. The crystal structure of 1,1′-(2,3,5,6-tetramethylpyrazine-1,4-diyl)bis(ethan-1-one), C12H18N2O2
  24. Crystal structure of [μ2-piperazine-1,4-bis(2-hydroxypropanesulfonato-κ2O:O′)] bis(μ2-4,4′-trimethylenedipyridyl-κ2N:N′)disilver(I), C18H24AgN3O4S
  25. Crystal structure of bis ((1-((E)-((4-methoxyphenyl)imino)methyl)naphthalen-2-yl)oxy) copper(II), C36H28CuN2O4
  26. Synthesis and crystal structure of 6,6′-((1E,11E)-5,8-dioxa-2,11-diazadodeca-1,11-diene-1,12-diyl) bis(2,4-di-tert-butylphenol), C36H56N2O4
  27. The crystal structure of barium hexahydroxidoiridate(IV) dihydroxide, Ba2[Ir(OH)6](OH)2
  28. Crystal structure of cinnamoyl ferrocene, C19H16FeO
  29. Crystal structure of (E)-3-(4-butoxyphenyl)acryloylferrocene, C23H24FeO2
  30. Crystal structure of 7-(dimethylamino)-2-hydroxy-2-(trifluoromethyl)-2H-chromene-3-ethyl carboxylate, C15H16F3NO4
  31. The crystal structure of 1-phenylethan-1-aminium 4-hydroxy-3,5-dimethoxybenzoate C17H21NO5
  32. The crystal structure of 1,3,5-trichloro-2-nitrobenzene
  33. The crystal structure of tris(μ2-bromido)-bis(η6-p-cymene)-diosmium(II) tetrafluoroborate, C20H28BBr3F4Os2
  34. Crystal structure of new barium lithium manganese fluorides: Ba14Li1.87Mn14.13F68 with a Jarlite–related structure
  35. Crystal structure of (4-fluorobenzyl)triphenylphosphonium chloride, C25H21ClFP
  36. The crystal structure of calcitriol–chloroform (1/1), C27H44O3⋅CHCl3
  37. The crystal structure of (E)-1-((3)-nitrophenyl)pyren-3-(pyren-1-yl)prop-2-en-1-one, C25H15NO3
  38. Crystal structure of (E)-2-hydroxy-N′-(1-(4-hydroxyphenyl)propylidene)benzohydrazide, C16H16N2O3
  39. Crystal structure of (E)-(3-(thiophen-2-yl)acryloyl)ferrocene, C17H14FeOS
  40. Crystal structure of (E)-(3-(furan-2-yl)acryloyl)ferrocene, C17H14FeO2
  41. Synthesis and crystal structure poly[diaqua(μ3-3-(((7-hydroxy-3-(4-methoxy-3-sulfonatophenyl)-4-oxo-4H-chromen-8-yl) methyl)ammonio)propanoate-κ3 O:O′:O″) sodium(I)] monohydrate, C20H24NNaO12S
  42. Crystal structure of 9-methoxy-4-(2-methoxypyridin-3-yl)-5,6-dihydrobenzo[h]quinazolin-2-amine C19H18N4O2
  43. Synthesis and crystal structure of 4-(difluoromethyl)-1-methyl-N-(pyridin-3-yl)-1H-pyrazole-3-carboxamide hydrate, C11H12F2N4O2
  44. The crystal structure of caesalfurfuric acid B, C22H32O4
  45. The crystal structure of 2-bromo-2-(5-bromo-2-methyl-4-nitro-1H-imidazol-1-yl)-1-phenylethanone, C12H9Br2N3O3
  46. The crystal structure of bis{chlorido-[μ2-(1-oxidopyridin-2-yl)(pyridin-2-yl)amido-κ3 O,N, N′]copper(II)}, C20H16Cl2Cu2N6O2
  47. The crystal structure of 3-amino-2-formyl-1-phenyl-9,10-dihydrophenanthrene-4-carbonitrile, C22H16N2O
  48. The crystal structure of 1,1′-(2,5-dimethylpyrazine-1,4-diyl)bis(ethan-1-one), C10H14N2O2
  49. Crystal structure of 5′-(9-phenyl-9H-carbazol-3-yl)-[2,2′-bithiophene]-5-carbaldehyde, C27H17NOS2
  50. The crystal structure of the double salt dipyridin-1-ium bromide tribromide
  51. Crystal structure of (E)-(3-(3-methylthiophen-2-yl)acryloyl)ferrocene, C18H16FeOS
  52. Crystal structure of (E)-(3-(4-phenoxyphenyl)acryloyl)ferrocene, C25H20FeO2
  53. Crystal structure of (E)-(3-(3,4-dimethylphenyl)acryloyl)ferrocene, C21H20FeO
  54. Crystal structure of [(1,4,8,11-tetraazacyclotetradecane-κ4N,N′,N′′,N‴)tetracyanidodiplatinum(II)] dimethyl sulfoxide solvate, C18H36N8O2Pt2S2
  55. Crystal structure of (4-ethoxybenzyl)triphenylphosphonium bromide ethanol solvate, C29H32BrO2P
  56. Crystal structure of (1-naphthalen-1-yl-methyl)triphenylphosphonium chloride ethanol solvate, C31H30ClOP
  57. Crystal structure of (1,4,8,11-tetraazacyclotetradecane-κ4N,N,N,N‴)platinum(II) bis[tribromido(dimethyl sulfoxide-κS)platinate(II)], C14H36Br6N4O2Pt3S2
  58. Crystal structure of (2-methylbenzyl)triphenylphosphonium chloride ethanol solvate, C28H30ClOP
  59. Crystal structure of bis(η2, σ1-8-methoxycyclooct-4-enyl)(μ2-1,4,8,11-tetraazacyclotetradecane-κ4 N, N, N, N‴)diplatinum(II) dibromide, C28H54Br2N4O2Pt2
  60. Crystal structure of (1,4,8,11-tetraazacyclotetradecane-κ4N,N,N,N)palladium(II) tetrabromidopalladate(II), C10H24Br4N4Pd2
  61. Crystal structure of (1,4,8,11-tetraazacyclotetradecane-κ4N,N,N,N‴)palladium(II) bis[trichlorido(dimethyl sulfoxide-κS)platinate(II)], C14H36Cl6N4O2PdPt2S2
  62. Crystal structure of (1,4,8,11-tetraazacyclotetradecane-κ4N,N′,N″,N‴)palladium(II) tetraiodidopalladate(II), C10H24I4N4Pd2
Downloaded on 5.11.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ncrs-2024-0471/html
Scroll to top button